ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class

262   0   0.0 ( 0 )
 نشر من قبل Quanquan C. Liu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a new framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to $textit{edit}$ a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then $textit{lift}$ the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, ($ell$-)Dominating Set, Edge ($ell$-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of several important graph classes (in some cases, also approximating the target parameter of the family). For bounded degeneracy, we obtain a bicriteria $(4,4)$-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria $(O(log^{1.5} n), O(sqrt{log w}))$-approximation, and for bounded pathwidth, we obtain a bicriteria $(O(log^{1.5} n), O(sqrt{log w} cdot log n))$-approximation. For treedepth $2$ (also related to bounded expansion), we obtain a $4$-approximation. We also prove complementary hardness-of-approximation results assuming $mathrm{P} eq mathrm{NP}$: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor ($2$ assuming UGC).



قيم البحث

اقرأ أيضاً

In $(k,r)$-Center we are given a (possibly edge-weighted) graph and are asked to select at most $k$ vertices (centers), so that all other vertices are at distance at most $r$ from a center. In this paper we provide a number of tight fine-grained boun ds on the complexity of this problem with respect to various standard graph parameters. Specifically: - For any $rge 1$, we show an algorithm that solves the problem in $O^*((3r+1)^{textrm{cw}})$ time, where $textrm{cw}$ is the clique-width of the input graph, as well as a tight SETH lower bound matching this algorithms performance. As a corollary, for $r=1$, this closes the gap that previously existed on the complexity of Dominating Set parameterized by $textrm{cw}$. - We strengthen previously known FPT lower bounds, by showing that $(k,r)$-Center is W[1]-hard parameterized by the input graphs vertex cover (if edge weights are allowed), or feedback vertex set, even if $k$ is an additional parameter. Our reductions imply tight ETH-based lower bounds. Finally, we devise an algorithm parameterized by vertex cover for unweighted graphs. - We show that the complexity of the problem parameterized by tree-depth is $2^{Theta(textrm{td}^2)}$ by showing an algorithm of this complexity and a tight ETH-based lower bound. We complement these mostly negative results by providing FPT approximation schemes parameterized by clique-width or treewidth which work efficiently independently of the values of $k,r$. In particular, we give algorithms which, for any $epsilon>0$, run in time $O^*((textrm{tw}/epsilon)^{O(textrm{tw})})$, $O^*((textrm{cw}/epsilon)^{O(textrm{cw})})$ and return a $(k,(1+epsilon)r)$-center, if a $(k,r)$-center exists, thus circumventing the problems W-hardness.
These are the lecture notes for the DIMACS Tutorial Limits of Approximation Algorithms: PCPs and Unique Games held at the DIMACS Center, CoRE Building, Rutgers University on 20-21 July, 2009. This tutorial was jointly sponsored by the DIMACS Special Focus on Hardness of Approximation, the DIMACS Special Focus on Algorithmic Foundations of the Internet, and the Center for Computational Intractability with support from the National Security Agency and the National Science Foundation. The speakers at the tutorial were Matthew Andrews, Sanjeev Arora, Moses Charikar, Prahladh Harsha, Subhash Khot, Dana Moshkovitz and Lisa Zhang. The sribes were Ashkan Aazami, Dev Desai, Igor Gorodezky, Geetha Jagannathan, Alexander S. Kulikov, Darakhshan J. Mir, Alantha Newman, Aleksandar Nikolov, David Pritchard and Gwen Spencer.
To date, the only way to argue polynomial lower bounds for dynamic algorithms is via fine-grained complexity arguments. These arguments rely on strong assumptions about specific problems such as the Strong Exponential Time Hypothesis (SETH) and the O nline Matrix-Vector Multiplication Conjecture (OMv). While they have led to many exciting discoveries, dynamic algorithms still miss out some benefits and lessons from the traditional ``coarse-grained approach that relates together classes of problems such as P and NP. In this paper we initiate the study of coarse-grained complexity theory for dynamic algorithms. Below are among questions that this theory can answer. What if dynamic Orthogonal Vector (OV) is easy in the cell-probe model? A research program for proving polynomial unconditional lower bounds for dynamic OV in the cell-probe model is motivated by the fact that many conditional lower bounds can be shown via reductions from the dynamic OV problem. Since the cell-probe model is more powerful than word RAM and has historically allowed smaller upper bounds, it might turn out that dynamic OV is easy in the cell-probe model, making this research direction infeasible. Our theory implies that if this is the case, there will be very interesting algorithmic consequences: If dynamic OV can be maintained in polylogarithmic worst-case update time in the cell-probe model, then so are several important dynamic problems such as $k$-edge connectivity, $(1+epsilon)$-approximate mincut, $(1+epsilon)$-approximate matching, planar nearest neighbors, Chans subset union and 3-vs-4 diameter. The same conclusion can be made when we replace dynamic OV by, e.g., subgraph connectivity, single source reachability, Chans subset union, and 3-vs-4 diameter. Lower bounds for $k$-edge connectivity via dynamic OV? (see the full abstract in the pdf file).
We study a combinatorial problem called Minimum Maximal Matching, where we are asked to find in a general graph the smallest that can not be extended. We show that this problem is hard to approximate with a constant smaller than 2, assuming the Uniqu e Games Conjecture. As a corollary we show, that Minimum Maximal Matching in bipartite graphs is hard to approximate with constant smaller than $frac{4}{3}$, with the same assumption. With a stronger variant of the Unique Games Conjecture --- that is Small Set Expansion Hypothesis --- we are able to improve the hardness result up to the factor of $frac{3}{2}$.
198 - Troy Lee , Adi Shraibman 2021
One of the strongest techniques available for showing lower bounds on quantum communication complexity is the logarithm of the approximation rank of the communication matrix--the minimum rank of a matrix which is entrywise close to the communication matrix. This technique has two main drawbacks: it is difficult to compute, and it is not known to lower bound quantum communication complexity with entanglement. Linial and Shraibman recently introduced a norm, called gamma_2^{alpha}, to quantum communication complexity, showing that it can be used to lower bound communication with entanglement. Here the parameter alpha is a measure of approximation which is related to the allowable error probability of the protocol. This bound can be written as a semidefinite program and gives bounds at least as large as many techniques in the literature, although it is smaller than the corresponding alpha-approximation rank, rk_alpha. We show that in fact log gamma_2^{alpha}(A)$ and log rk_{alpha}(A)$ agree up to small factors. As corollaries we obtain a constant factor polynomial time approximation algorithm to the logarithm of approximate rank, and that the logarithm of approximation rank is a lower bound for quantum communication complexity with entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا