ترغب بنشر مسار تعليمي؟ اضغط هنا

Polaronic behavior of photoelectron spectra of Fe3O4 revealed by both hard X-ray and extremely low energy photons

141   0   0.0 ( 0 )
 نشر من قبل Masato Kimura
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hard X-ray and extremely low energy bulk-sensitive photoelectron spectroscopy has been performed in the temperature range of 100-330 K for Fe3O4. In the high temperature phase just above the Verwey transition, the intensity at the Fermi level (EF) is still negligible, but it increases gradually with further increasing the temperature (250 K, 330 K) in consistence with the temperature dependence of the conductivity. The spectral behaviors near EF with temperature are well explained by the model, which takes the polaron effect into account.


قيم البحث

اقرأ أيضاً

A laboratory hard X-ray photoelectron spectroscopy (HXPS) system equipped with a monochromatic Cr K$alpha$ ($h u = 5414.7$ eV) X-ray source was applied to an investigation of the core-level electronic structure of La$_{1-x}$Sr$_x$MnO$_3$. No apprecia ble high binding-energy shoulder in the O $1s$ HXPS spectra were observed while an enhanced low binding-energy shoulder structure in the Mn $2p_{3/2}$ HXPS spectra were observed, both of which are manifestation of high bulk sensitivity. Such high bulk sensitivity enabled us to track the Mn $2p_{3/2}$ shoulder structure in the full range of $x$, giving us a new insight into the binding-energy shift of the Mn $2p_{3/2}$ core level. Comparisons with the results using the conventional laboratory XPS ($h u = 1486.6$ eV) as well as those using a synchrotron radiation source ($h u = 7939.9$ eV) demonstrate that HXPS is a powerful and convenient tool to analyze the bulk electronic structure of a host of different compounds.
Soft and hard X-ray photoelectron spectroscopy (PES) has been performed for one of the heavy fermion system CeRu$_2$Si$_2$ and a $4f$-localized ferromagnet CeRu$_2$Ge$_2$ in the paramagnetic phase. The three-dimensional band structures and Fermi surf ace (FS) shapes of CeRu$_2$Si$_2$ have been determined by soft X-ray $h u$-dependent angle resolved photoelectron spectroscopy (ARPES). The differences in the Fermi surface topology and the non-$4f$ electronic structures between CeRu$_2$Si$_2$ and CeRu$_2$Ge$_2$ are qualitatively explained by the band-structure calculation for both $4f$ itinerant and localized models, respectively. The Ce valences in CeRu$_2X_2$ ($X$ = Si, Ge) at 20 K are quantitatively estimated by the single impurity Anderson model calculation, where the Ce 3d hard X-ray core-level PES and Ce 3d X-ray absorption spectra have shown stronger hybridization and signature for the partial $4f$ contribution to the conduction electrons in CeRu$_2$Si$_2$.
111 - M. Paul , A. Mueller , A. Ruff 2009
Magnetite (Fe3O4) thin films on GaAs have been studied with HArd X-ray PhotoElectron Spectroscopy (HAXPES) and low-energy electron diffraction. Films prepared under different growth conditions are compared with respect to stoichiometry, oxidation, an d chemical nature. Employing the considerably enhanced probing depth of HAXPES as compared to conventional x-ray photoelectron spectroscopy (XPS) allows us to investigate the chemical state of the film-substrate interfaces. The degree of oxidation and intermixing at the interface are dependent on the applied growth conditions; in particular, we found that metallic Fe, As2O3, and Ga2O3 exist at the interface. These interface phases might be detrimental for spin injection from magnetite into GaAs.
We investigated the magnetic structure of an orthorhombic YMnO3 thin film by resonant soft x-ray and hard x-ray diffraction. We observed a temperature-dependent incommensurate magnetic reflection below 45 K and a commensurate lattice-distortion refle ction below 35 K. These results demonstrate that the ground state is composed of coexisting E-type and cycloidal states. Their different ordering temperatures clarify the origin of the large polarization to be caused by the E-type antiferromagnetic states in the orthorhombic YMnO3 thin film.
Here we report about the interface reconstruction in the recently discovered superconducting artificial superlattices based on insulating CaCuO2 and SrTiO3 blocks. Hard x-ray photoelectron spectroscopy shows that the valence bands alignment prevents any electronic reconstruction by direct charge transfer between the two blocks. We demonstrate that the electrostatic built-in potential is suppressed by oxygen redistribution in the alkaline earth interface planes. By using highly oxidizing growth conditions, the oxygen coordination in the reconstructed interfaces may be increased, resulting in the hole doping of the cuprate block and thus in the appearance of superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا