ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the large polarization in multiferroic YMnO$_3$ thin films revealed by soft and hard x-ray diffraction

87   0   0.0 ( 0 )
 نشر من قبل Hiroki Wadati
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the magnetic structure of an orthorhombic YMnO3 thin film by resonant soft x-ray and hard x-ray diffraction. We observed a temperature-dependent incommensurate magnetic reflection below 45 K and a commensurate lattice-distortion reflection below 35 K. These results demonstrate that the ground state is composed of coexisting E-type and cycloidal states. Their different ordering temperatures clarify the origin of the large polarization to be caused by the E-type antiferromagnetic states in the orthorhombic YMnO3 thin film.

قيم البحث

اقرأ أيضاً

119 - H. Wadati , J. Geck , E. Schierle 2011
We report the study of magnetic and orbital order in Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ epitaxial thin films grown on (LaAlO$_3$)$_{0.3}$-(SrAl$_{0.5}$Ta$_{0.5}$O$_3$)$_{0.7}$ (LSAT) (011)$_c$. In a new experimental approach, the polarization and energy dep endence of resonant soft x-ray scattering are used to reveal significant modifications of the magnetic order in the film as compared to the bulk, namely (i) a different magnetic ordering wave vector, (ii) a different magnetic easy axis and (iii) an additional magnetic reordering transition at low temperatures. These observations indicate a strong impact of the epitaxial strain on the spin order, which is mediated by the orbital degrees of freedom and which provides a promising route to tune the magnetic properties of manganite films. Our results further demonstrate that resonant soft x-ray scattering is a very suitable technique to study the magnetism in thin films, to which neutron scattering cannot easily be applied due to the small sample volume.
We investigated the electronic structure of the SrTiO$_3$/LaAlO$_3$ superlattice (SL) by resonant soft x-ray scattering. The (003) peak, which is forbidden for our ideal SL structure, was observed at all photon energies, indicating reconstruction at the interface. From the peak position analyses taking into account the effects of refraction, we obtained evidence for electronic reconstruction of Ti 3d and O $2p$ states at the interface. From reflectivity analyses, we concluded that the AlO$_2$/LaO/TiO$_2$/SrO and the TiO$_2$/SrO/AlO$_2$/LaO interfaces are quite different, leading to highly asymmetric properties.
We have studied the electronic structure of epitaxially grown thin films of La$_{1-x}$Sr$_x$FeO$_3$ by {it in-situ} photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS) measurements. The Fe 2$p$ and valence-band PES spectra and th e O $1s$ XAS spectra of LaFeO$_3$ have been successfully reproduced by configuration-interaction cluster-model calculation and, except for the satellite structure, by band-structure calculation.From the shift of the binding energies of core levels, the chemical potential was found to be shifted downward as $x$ was increased. Among the three peaks in the valence-band spectra of La$_{1-x}$Sr$_x$FeO$_3$, the peak nearest to the Fermi level ($E_F$), due to the ``$e_{g}$ band, was found to move toward $E_F$ and became weaker as $x$ was increased, whereas the intensity of the peak just above $E_F$ in the O $1s$ XAS spectra increased with $x$. The gap or pseudogap at $E_F$ was seen for all values of $x$. These results indicate that changes in the spectral line shape around $E_F$ are dominated by spectral weight transfer from below to above $E_F$ across the gap and are therefore highly non-rigid-band-like.
Multiferroic TbMnO3 is investigated using x-ray diffraction in high magnetic fields. Measurements on first and second harmonic structural reflections due to modulations induced by the Mn and Tb magnetic order are presented as function of temperature and field oriented along the a and b-directions of the crystal. The relation to changes in ordering of the rare earth moments in applied field is discussed. Observations below T_N(Tb) without and with applied magnetic field point to a strong interaction of the rare earth order, the Mn moments and the lattice. Also, the incommensurate to commensurate transition of the wave vector at the critical fields is discussed with respect to the Tb and Mn magnetic order and a phase diagram on basis of these observations for magnetic fields H||a and H||b is presented. The observations point to a complicated and delicate magneto-elastic interaction as function of temperature and field.
387 - K. Yamagami , K. Ikeda , A. Hariki 2021
The strain effect from a substrate is an important experimental route to control electronic and magnetic properties in transition-metal oxide (TMO) thin films. Using hard x-ray photoemission spectroscopy, we investigate the strain dependence of the v alence states in LaNiO$_{3}$ thin films, strongly correlated perovskite TMO, grown on four substrates: LaAlO$_{3}$, (LaAlO$_{3}$)$_{0.3}$(SrAl$_{0.5}$Ta$_{0.5}$O$_{3}$)$_{0.7}$, SrTiO$_{3}$, and DyScO$_{3}$. A Madelung potential analysis of core-level spectra suggests that the point-charge description is valid for the La ions while it breaks down for Ni and O ions due to a strong covalent bonding between the two. A clear x-ray photon-energy dependence of the valence spectra is analyzed by the density functional theory, which points to a presence of the La 5$p$ state near the Fermi level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا