ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the interface of Fe3O4/GaAs thin films by hard x-ray photoelectron spectroscopy

118   0   0.0 ( 0 )
 نشر من قبل Markus Paul
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetite (Fe3O4) thin films on GaAs have been studied with HArd X-ray PhotoElectron Spectroscopy (HAXPES) and low-energy electron diffraction. Films prepared under different growth conditions are compared with respect to stoichiometry, oxidation, and chemical nature. Employing the considerably enhanced probing depth of HAXPES as compared to conventional x-ray photoelectron spectroscopy (XPS) allows us to investigate the chemical state of the film-substrate interfaces. The degree of oxidation and intermixing at the interface are dependent on the applied growth conditions; in particular, we found that metallic Fe, As2O3, and Ga2O3 exist at the interface. These interface phases might be detrimental for spin injection from magnetite into GaAs.



قيم البحث

اقرأ أيضاً

Fe3O4 (magnetite) is one of the most elusive quantum materials and at the same time one of the most studied transition metal oxide materials for thin film applications. The theoretically expected half-metallic behavior generates high expectations tha t it can be used in spintronic devices. Yet, despite the tremendous amount of work devoted to preparing thin films, the enigmatic first order metal-insulator transition and the hall mark of magnetite known as the Verwey transition, is in thin films extremely broad and occurs at substantially lower temperatures as compared to that in high quality bulk single crystals. Here we have succeeded in finding and making a particular class of substrates that allows the growth of magnetite thin films with the Verwey transition as sharp as in the bulk. Moreover, we are now able to tune the transition temperature and, using tensile strain, increase it to substantially higher values than in the bulk.
307 - M. Sing , G. Berner , K. Goss 2009
The conducting interface of LaAlO$_3$/SrTiO$_3$ heterostructures has been studied by hard X-ray photoelectron spectroscopy. From the Ti~2$p$ signal and its angle-dependence we derive that the thickness of the electron gas is much smaller than the pro bing depth of 4 nm and that the carrier densities vary with increasing number of LaAlO$_3$ overlayers. Our results point to an electronic reconstruction in the LaAlO$_3$ overlayer as the driving mechanism for the conducting interface and corroborate the recent interpretation of the superconducting ground state as being of the Berezinskii-Kosterlitz-Thouless type.
492 - C. F. Chang , Z. Hu , S. Klein 2016
Polar catastrophe at the interface of oxide materials with strongly correlated electrons has triggered a flurry of new research activities. The expectations are that the design of such advanced interfaces will become a powerful route to engineer devi ces with novel functionalities. Here we investigate the initial stages of growth and the electronic structure of the spintronic Fe3O4/MgO (001) interface. Using soft x-ray absorption spectroscopy we have discovered that the so-called A-sites are completely missing in the first Fe3O4 monolayer. This allows us to develop an unexpected but elegant growth principle in which during deposition the Fe atoms are constantly on the move to solve the divergent electrostatic potential problem, thereby ensuring epitaxy and stoichiometry at the same time. This growth principle provides a new perspective for the design of interfaces.
SiC is set to enable a new era in power electronics impacting a wide range of energy technologies, from electric vehicles to renewable energy. Its physical characteristics outperform silicon in many aspects, including band gap, breakdown field, and t hermal conductivity. The main challenge for further development of SiC-based power semiconductor devices is the quality of the interface between SiC and its native dielectric SiO$_2$. High temperature nitridation processes can improve the interface quality and ultimately the device performance immensely, but the underlying chemical processes are still poorly understood. Here, we present an energy-dependent hard X-ray photoelectron spectroscopy (HAXPES) study probing non-destructively SiC and SiO$_2$ and their interface in device stacks treated in varying atmospheres. We successfully combine laboratory- and synchrotron-based HAXPES to provide unique insights into the chemistry of interface defects and their passivation through nitridation processes.
In order to realize superconductivity in cuprates with the T-type structure, not only chemical substitution (Ce doping) but also post-growth reduction annealing is necessary. In the case of thin films, however, well-designed reduction annealing alone without Ce doping can induce superconductivity in the T-type cuprates. In order to unveil the origin of superconductivity in the Ce-undoped T-type cuprates, we have performed bulk-sensitive hard x-ray photoemission and soft x-ray absorption spectroscopies on superconducting and non-superconducting Nd$_{2-x}$Ce$_x$CuO$_4$ ($x=$ 0, 0.15, and 0.19) thin films. By post-growth annealing, core-level spectra exhibited dramatic changes, which we attributed to the enhancement of core-hole screening in the CuO$_2$ plane and the shift of chemical potential along with changes in the band filling. The result suggests that the superconducting Nd$_2$CuO$_4$ film is doped with electrons and that the electronic states are similar to those of Ce-doped superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا