ﻻ يوجد ملخص باللغة العربية
We propose a new mechanism leading to scale-free networks which is based on the presence of an intrinsic character of a vertex called fitness. In our model, a vertex $i$ is assigned a fitness $x_i$, drawn from a given probability distribution function $f(x)$. During network evolution, with rate $p$ we add a vertex $j$ of fitness $x_j$ and connect to an existing vertex $i$ of fitness $x_i$ selected preferentially to a linking probability function $g(x_i,x_j)$ which depends on the fitnesses of the two vertices involved and, with rate $1-p$ we create an edge between two already existed vertices with fitnesses $x_i$ and $x_j$, with a probability also preferential to the connection function $g(x_i,x_j)$. For the proper choice of $g$, the resulting networks have generalized power laws, irrespective of the fitness distribution of vertices.
Individual nodes in evolving real-world networks typically experience growth and decay --- that is, the popularity and influence of individuals peaks and then fades. In this paper, we study this phenomenon via an intrinsic nodal fitness function and
We present a novel method to reconstruct complex network from partial information. We assume to know the links only for a subset of the nodes and to know some non-topological quantity (fitness) characterising every node. The missing links are generat
In this paper we show that the small world and weak ties phenomena can spontaneously emerge in a social network of interacting agents. This dynamics is simulated in the framework of a simplified model of opinion diffusion in an evolving social networ
We consider a model of a population of fixed size $N$ undergoing selection. Each individual acquires beneficial mutations at rate $mu_N$, and each beneficial mutation increases the individuals fitness by $s_N$. Each individual dies at rate one, and w
We discuss two different ways of chromosomes and genomes evolution. Purifying selection dominates in large panmictic populations, where Mendelian law of independent gene assortment is valid. If the populations are small, recombination processes are n