ترغب بنشر مسار تعليمي؟ اضغط هنا

Individual focus and knowledge contribution

60   0   0.0 ( 0 )
 نشر من قبل Lada A. Adamic
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Before contributing new knowledge, individuals must attain requisite background knowledge or skills through schooling, training, practice, and experience. Given limited time, individuals often choose either to focus on few areas, where they build deep expertise, or to delve less deeply and distribute their attention and efforts across several areas. In this paper we measure the relationship between the narrowness of focus and the quality of contribution across a range of both traditional and recent knowledge sharing media, including scholarly articles, patents, Wikipedia, and online question and answer forums. Across all systems, we observe a small but significant positive correlation between focus and quality.

قيم البحث

اقرأ أيضاً

It is well understood that a system built from individually fair components may not itself be individually fair. In this work, we investigate individual fairness under pipeline composition. Pipelines differ from ordinary sequential or repeated compos ition in that individuals may drop out at any stage, and classification in subsequent stages may depend on the remaining cohort of individuals. As an example, a company might hire a team for a new project and at a later point promote the highest performer on the team. Unlike other repeated classification settings, where the degree of unfairness degrades gracefully over multiple fair steps, the degree of unfairness in pipelines can be arbitrary, even in a pipeline with just two stages. Guided by a panoply of real-world examples, we provide a rigorous framework for evaluating different types of fairness guarantees for pipelines. We show that na{i}ve auditing is unable to uncover systematic unfairness and that, in order to ensure fairness, some form of dependence must exist between the design of algorithms at different stages in the pipeline. Finally, we provide constructions that permit flexibility at later stages, meaning that there is no need to lock in the entire pipeline at the time that the early stage is constructed.
The emergence of New Data Sources (NDS) in healthcare is revolutionising traditional electronic health records in terms of data availability, storage, and access. Increasingly, clinicians are using NDS to build a virtual holistic image of a patients health condition. This research is focused on a review and analysis of the current legislation and privacy rules available for healthcare professionals. NDS in this project refers to and includes patient-generated health data, consumer device data, wearable health and fitness data, and data from social media. This project reviewed legal and regulatory requirements for New Zealand, Australia, the European Union, and the United States to establish the ground reality of existing mechanisms in place concerning the use of NDS. The outcome of our research is to recommend changes and enhancements required to better prepare for the tsunami of NDS and applications in the currently evolving data-driven healthcare area and precision or personalised health initiatives such as Precision Driven Health (PDH) in New Zealand.
Trends like digital transformation even intensify the already overwhelming mass of information knowledge workers face in their daily life. To counter this, we have been investigating knowledge work and information management support measures inspired by human forgetting. In this paper, we give an overview of solutions we have found during the last five years as well as challenges that still need to be tackled. Additionally, we share experiences gained with the prototype of a first forgetful information system used 24/7 in our daily work for the last three years. We also address the untapped potential of more explicated user context as well as features inspired by Memory Inhibition, which is our current focus of research.
AI researchers employ not only the scientific method, but also methodology from mathematics and engineering. However, the use of the scientific method - specifically hypothesis testing - in AI is typically conducted in service of engineering objectiv es. Growing interest in topics such as fairness and algorithmic bias show that engineering-focused questions only comprise a subset of the important questions about AI systems. This results in the AI Knowledge Gap: the number of unique AI systems grows faster than the number of studies that characterize these systems behavior. To close this gap, we argue that the study of AI could benefit from the greater inclusion of researchers who are well positioned to formulate and test hypotheses about the behavior of AI systems. We examine the barriers preventing social and behavioral scientists from conducting such studies. Our diagnosis suggests that accelerating the scientific study of AI systems requires new incentives for academia and industry, mediated by new tools and institutions. To address these needs, we propose a two-sided marketplace called TuringBox. On one side, AI contributors upload existing and novel algorithms to be studied scientifically by others. On the other side, AI examiners develop and post machine intelligence tasks designed to evaluate and characterize algorithmic behavior. We discuss this markets potential to democratize the scientific study of AI behavior, and thus narrow the AI Knowledge Gap.
High-quality education is one of the keys to achieving a more sustainable world. The recent COVID-19 epidemic has triggered the outbreak of online education, which has enabled both students and teachers to learn and teach at home. Meanwhile, it is no w possible to record and research a large amount of learning data using online learning platforms in order to offer better intelligent educational services. Knowledge Tracing (KT), which aims to monitor students evolving knowledge state, is a fundamental and crucial task to support these intelligent services. Therefore, an increasing amount of research attention has been paid to this emerging area and considerable progress has been made. In this survey, we propose a new taxonomy of existing basic KT models from a technical perspective and provide a comprehensive overview of these models in a systematic manner. In addition, many variants of KT models have been proposed to capture more complete learning process. We then review these variants involved in three phases of the learning process: before, during, and after the student learning, respectively. Moreover, we present several typical applications of KT in different educational scenarios. Finally, we provide some potential directions for future research in this fast-growing field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا