ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey of Knowledge Tracing

63   0   0.0 ( 0 )
 نشر من قبل Shuanghong Shen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

High-quality education is one of the keys to achieving a more sustainable world. The recent COVID-19 epidemic has triggered the outbreak of online education, which has enabled both students and teachers to learn and teach at home. Meanwhile, it is now possible to record and research a large amount of learning data using online learning platforms in order to offer better intelligent educational services. Knowledge Tracing (KT), which aims to monitor students evolving knowledge state, is a fundamental and crucial task to support these intelligent services. Therefore, an increasing amount of research attention has been paid to this emerging area and considerable progress has been made. In this survey, we propose a new taxonomy of existing basic KT models from a technical perspective and provide a comprehensive overview of these models in a systematic manner. In addition, many variants of KT models have been proposed to capture more complete learning process. We then review these variants involved in three phases of the learning process: before, during, and after the student learning, respectively. Moreover, we present several typical applications of KT in different educational scenarios. Finally, we provide some potential directions for future research in this fast-growing field.



قيم البحث

اقرأ أيضاً

232 - Yuhao Zhou , Xihua Li , Yunbo Cao 2021
In educational applications, Knowledge Tracing (KT), the problem of accurately predicting students responses to future questions by summarizing their knowledge states, has been widely studied for decades as it is considered a fundamental task towards adaptive online learning. Among all the proposed KT methods, Deep Knowledge Tracing (DKT) and its variants are by far the most effective ones due to the high flexibility of the neural network. However, DKT often ignores the inherent differences between students (e.g. memory skills, reasoning skills, ...), averaging the performances of all students, leading to the lack of personalization, and therefore was considered insufficient for adaptive learning. To alleviate this problem, in this paper, we proposed Leveled Attentive KNowledge TrAcing (LANA), which firstly uses a novel student-related features extractor (SRFE) to distill students unique inherent properties from their respective interactive sequences. Secondly, the pivot module was utilized to dynamically reconstruct the decoder of the neural network on attention of the extracted features, successfully distinguishing the performance between students over time. Moreover, inspired by Item Response Theory (IRT), the interpretable Rasch model was used to cluster students by their ability levels, and thereby utilizing leveled learning to assign different encoders to different groups of students. With pivot module reconstructed the decoder for individual students and leveled learning specialized encoders for groups, personalized DKT was achieved. Extensive experiments conducted on two real-world large-scale datasets demonstrated that our proposed LANA improves the AUC score by at least 1.00% (i.e. EdNet 1.46% and RAIEd2020 1.00%), substantially surpassing the other State-Of-The-Art KT methods.
144 - Moyu Zhang 2021
With the increasing demands of personalized learning, knowledge tracing has become important which traces students knowledge states based on their historical practices. Factor analysis methods mainly use two kinds of factors which are separately rela ted to students and questions to model students knowledge states. These methods use the total number of attempts of students to model students learning progress and hardly highlight the impact of the most recent relevant practices. Besides, current factor analysis methods ignore rich information contained in questions. In this paper, we propose Multi-Factors Aware Dual-Attentional model (MF-DAKT) which enriches question representations and utilizes multiple factors to model students learning progress based on a dual-attentional mechanism. More specifically, we propose a novel student-related factor which records the most recent attempts on relevant concepts of students to highlight the impact of recent exercises. To enrich questions representations, we use a pre-training method to incorporate two kinds of question information including questions relation and difficulty level. We also add a regularization term about questions difficulty level to restrict pre-trained question representations to fine-tuning during the process of predicting students performance. Moreover, we apply a dual-attentional mechanism to differentiate contributions of factors and factor interactions to final prediction in different practice records. At last, we conduct experiments on several real-world datasets and results show that MF-DAKT can outperform existing knowledge tracing methods. We also conduct several studies to validate the effects of each component of MF-DAKT.
The rapid global spread of COVID-19 has led to an unprecedented demand for effective methods to mitigate the spread of the disease, and various digital contact tracing (DCT) methods have emerged as a component of the solution. In order to make inform ed public health choices, there is a need for tools which allow evaluation and comparison of DCT methods. We introduce an agent-based compartmental simulator we call COVI-AgentSim, integrating detailed consideration of virology, disease progression, social contact networks, and mobility patterns, based on parameters derived from empirical research. We verify by comparing to real data that COVI-AgentSim is able to reproduce realistic COVID-19 spread dynamics, and perform a sensitivity analysis to verify that the relative performance of contact tracing methods are consistent across a range of settings. We use COVI-AgentSim to perform cost-benefit analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features. We find all DCT methods consistently reduce the spread of the disease, and that the advantage of FCT over BCT is maintained over a wide range of adoption rates. Feature-based methods of contact tracing avert more disability-adjusted life years (DALYs) per socioeconomic cost (measured by productive hours lost). Our results suggest any DCT method can help save lives, support re-opening of economies, and prevent second-wave outbreaks, and that FCT methods are a promising direction for enriching BCT using self-reported symptoms, yielding earlier warning signals and a significantly reduced spread of the virus per socioeconomic cost.
Knowledge tracing (KT) defines the task of predicting whether students can correctly answer questions based on their historical response. Although much research has been devoted to exploiting the question information, plentiful advanced information a mong questions and skills hasnt been well extracted, making it challenging for previous work to perform adequately. In this paper, we demonstrate that large gains on KT can be realized by pre-training embeddings for each question on abundant side information, followed by training deep KT models on the obtained embeddings. To be specific, the side information includes question difficulty and three kinds of relations contained in a bipartite graph between questions and skills. To pre-train the question embeddings, we propose to use product-based neural networks to recover the side information. As a result, adopting the pre-trained embeddings in existing deep KT models significantly outperforms state-of-the-art baselines on three common KT datasets.
Since the onset of the COVID-19s global spread we have been following the debate around contact tracing apps -- the tech-enabled response to the pandemic. As corporations, academics, governments, and civil society discuss the right way to implement t hese apps, we noticed recurring implicit assumptions. The proposed solutions are designed for a world where Internet access and smartphone ownership are a given, people are willing and able to install these apps, and those who receive notifications about potential exposure to the virus have access to testing and can isolate safely. In this work we challenge these assumptions. We not only show that there are not enough smartphones worldwide to reach required adoption thresholds but also highlight a broad lack of internet access, which affects certain groups more: the elderly, those with lower incomes, and those with limited ability to socially distance. Unfortunately, these are also the groups that are at the highest risks from COVID-19. We also report that the contact tracing apps that are already deployed on an opt-in basis show disappointing adoption levels. We warn about the potential consequences of over-extending the existing state and corporate surveillance powers. Finally, we describe a multitude of scenarios where contact tracing apps will not help regardless of access or policy. In this work we call for a comprehensive and equitable policy response that prioritizes the needs of the most vulnerable, protects human rights, and considers long term impact instead of focusing on technology-first fixes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا