ﻻ يوجد ملخص باللغة العربية
For a Grothendieck category C which, via a Z-generating sequence (O(n))_{n in Z}, is equivalent to the category of quasi-coherent modules over an associated Z-algebra A, we show that under suitable cohomological conditions taking quasi-coherent modules defines an equivalence between linear deformations of A and abelian deformations of C. If (O(n))_{n in Z} is at the same time a geometric helix in the derived category, we show that restricting a (deformed) Z-algebra to a thread of objects defines a further equivalence with linear deformations of the associated matrix algebra.
These are some notes on the basic properties of algebraic K-theory and G-theory of derived algebraic spaces and stacks, and the theory of fundamental classes in this setting.
We use the Beilinson $t$-structure on filtered complexes and the Hochschild-Kostant-Rosenberg theorem to construct filtrations on the negative cyclic and periodic cyclic homologies of a scheme $X$ with graded pieces given by the Hodge-completion of t
We show that the Friedlander-Mazur conjecture holds for a sequence of products of projective varieties such as the product of a smooth projective curve and a smooth projective surface, the product of two smooth projective surfaces, the product of arb
In this paper, we study the twisted Fourier-Mukai partners of abelian surfaces. Following the work of Huybrechts [doi:10.4171/CMH/465], we introduce the twisted derived equivalence between abelian surfaces. We show that there is a twisted derived Tor
We show that the infinitesimal deformations of the Brill--Noether locus $W_d$ attached to a smooth non-hyperelliptic curve $C$ are in one-to-one correspondence with the deformations of $C$. As an application, we prove that if a Jacobian $J$ deforms t