ترغب بنشر مسار تعليمي؟ اضغط هنا

Twisted derived equivalences and isogenies for abelian surfaces

114   0   0.0 ( 0 )
 نشر من قبل Haitao Zou
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the twisted Fourier-Mukai partners of abelian surfaces. Following the work of Huybrechts [doi:10.4171/CMH/465], we introduce the twisted derived equivalence between abelian surfaces. We show that there is a twisted derived Torelli theorem for abelian surfaces over fields with characteristic $ eq 2$. Over complex numbers, twisted derived equivalence corresponds to rational Hodge isometries between the second cohomology groups, which is in analogy to the work of Huybrechts and Fu-Vial on K3 surfaces. Their proof relies on the global Torelli theorem over $mathbb{C}$, which is missing in positive characteristics. To overcome this issue, we extend Shiodas trick on singular cohomology groups to etale and crystalline cohomology groups and make use of Tates isogeny theorem to give a characterization of twisted derived equivalence on abelian surfaces via using so called principal quasi-isogeny.



قيم البحث

اقرأ أيضاً

104 - Daniel Bragg , Ziquan Yang 2021
We study isogenies between K3 surfaces in positive characteristic. Our main result is a characterization of K3 surfaces isogenous to a given K3 surface $X$ in terms of certain integral sublattices of the second rational $ell$-adic and crystalline coh omology groups of $X$. This is a positive characteristic analog of a result of Huybrechts, and extends results of the second author. We give applications to the reduction types of K3 surfaces and to the surjectivity of the period morphism. To prove these results we describe a theory of B-fields and Mukai lattices in positive characteristic, which may be of independent interest. We also prove some results on lifting twisted Fourier--Mukai equivalences to characteristic 0, generalizing results of Lieblich and Olsson.
152 - Daniel Bragg 2018
We study the derived categories of twisted supersingular K3 surfaces. We prove a derived crystalline Torelli theorem for twisted supersingular K3 surfaces, characterizing Fourier-Mukai equivalences in terms of isomorphisms between their associated K3 crystals. This is a positive characteristic analog of the Hodge-theoretic derived Torelli theorem of Orlov, and its extension to twisted K3 surfaces by Huybrechts and Stellari. We give applications to various questions concerning Fourier-Mukai partners, extending results of Cu{a}ldu{a}raru and Huybrechts and Stellari. We also give an exact formula for the number of twisted Fourier-Mukai partners of a twisted supersingular K3 surface.
We show that for many moduli spaces M of torsion sheaves on K3 surfaces S, the functor D(S) -> D(M) induced by the universal sheaf is a P-functor, hence can be used to construct an autoequivalence of D(M), and that this autoequivalence can be factore d into geometrically meaningful equivalences associated to abelian fibrations and Mukai flops. Along the way we produce a derived equivalence between two compact hyperkaehler 2g-folds that are not birational, for every g >= 2. We also speculate about an approach to showing that birational moduli spaces of sheaves on K3 surfaces are derived-equivalent.
We prove that any Fourier--Mukai partner of an abelian surface over an algebraically closed field of positive characteristic is isomorphic to a moduli space of Gieseker-stable sheaves. We apply this fact to show that the Fourier--Mukai set of canonic al covers of hyperelliptic and Enriques surfaces over an algebraically closed field of characteristic greater than three is trivial. These results extend to positive characteristic earlier results of Bridgeland--Maciocia and Sosna.
107 - Wahei Hara 2017
We say that an exact equivalence between the derived categories of two algebraic varieties is tilting-type if it is constructed by using tilting bundles. The aim of this article is to understand the behavior of tilting-type equivalences for crepant r esolutions under deformations. As an application of the method that we establish in this article, we study the derived equivalence for stratified Mukai flops and stratified Atiyah flops in terms of tilting bundles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا