ﻻ يوجد ملخص باللغة العربية
Optical quantum information processing needs ultra-bright sources of entangled photons, especially from synchronizable femtosecond lasers and low-cost cw-diode lasers. Decoherence due to timing information and spatial mode-dependent phase has traditionally limited the brightness of such sources. We report on a variety of methods to optimize type-I polarization-entangled sources - the combined use of different compensation techniques to engineer high-fidelity pulsed and cw-diode laser-pumped sources, as well as the first production of polarization-entanglement directly from the highly nonlinear biaxial crystal BiB3O6 (BiBO). Using spatial compensation, we show more than a 400-fold improvement in the phase flatness, which otherwise limits efficient collection of entangled photons from BiBO, and report the highest fidelity to date (99%) of any ultrafast polarization-entanglement source. Our numerical code, available on our website, can design optimal compensation crystals and simulate entanglement from a variety of type-I phasematched nonlinear crystals.
We propose a method for the generation of a large variety of entangled states, encoded in the polarization degrees of freedom of N photons, within the same experimental setup. Starting with uncorrelated photons, emitted from N arbitrary single photon
Using the process of spontaneous parametric down conversion in a novel two-crystal geometry, one can generate a source of polarization-entangled photon pairs which is orders of magnitude brighter than previous sources. We have measured a high level o
We present an entangled-state quantum cryptography system that operated for the first time in a real world application scenario. The full key generation protocol was performed in real time between two distributed embedded hardware devices, which were
In this paper, we address the issue of the generation of non-degenerate cross-polarization-entangled photon pairs using type-II periodically poled lithium niobate. We show that, by an appropriate engineering of the quasi-phase-matching grating, it is
We report the realization of a new polarization entangled photon-pair source based on a titanium-indiffused waveguide integrated on periodically poled lithium niobate pumped by a CW laser at $655 nm$. The paired photons are emitted at the telecom wav