ﻻ يوجد ملخص باللغة العربية
In this paper, we address the issue of the generation of non-degenerate cross-polarization-entangled photon pairs using type-II periodically poled lithium niobate. We show that, by an appropriate engineering of the quasi-phase-matching grating, it is possible to simultaneously satisfy the conditions for two spontaneous parametric down-conversion processes, namely ordinary pump photon down-conversion to either extraordinary signal and ordinary idler paired photons, or to ordinary signal and extraordinary idler paired photons. In contrast to single type-II phase-matching, these two processes, when enabled together, can lead to the direct production of cross-polarization-entangled state for non degenerate signal and idler wavelengths. Such a scheme should be of great interest in applications requiring polarization-entangled non degenerate paired photons with, for instance, one of the entangled photons at an appropriate wavelength being used for local operation or for quantum storage in an atomic ensemble, and the other one at the typical wavelength of 1550 nm for propagation through an optical fiber.
Prospective integrated quantum optical technologies will combine nonlinear optics and components requiring cryogenic operating temperatures. Despite the prevalence of integrated platforms exploiting $chi^{(2)}$-nonlinearities for quantum optics, for
We propose to integrate the electro-optic tuning function into polarization-entangled photon pair generation process in a periodically poled lithium niobate (PPLN). Due to the versatility of PPLN, both the spontaneously parametric down conversion and
We report on the generation of photon pairs in the 1550-nm band suitable for long-distance fiber-optic quantum key distribution. The photon pairs were generated in a periodically poled lithium niobate waveguide with a high conversion-efficiency. Usin
Optical waveguides made from periodically poled materials provide high confinement of light and enable the generation of new wavelengths via quasi-phase-matching, making them a key platform for nonlinear optics and photonics. However, such devices ar
We propose a scheme for the generation of counterpropagating polarization-entangled photon pairs from a dual-periodically poled crystal. Compared with the usual forward-wave type source, this source, in the backward-wave way, has a much narrower band