ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrated optical source of polarization entangled photons at 1310 nm

183   0   0.0 ( 0 )
 نشر من قبل Martin Anthony Ph.D.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Martin




اسأل ChatGPT حول البحث

We report the realization of a new polarization entangled photon-pair source based on a titanium-indiffused waveguide integrated on periodically poled lithium niobate pumped by a CW laser at $655 nm$. The paired photons are emitted at the telecom wavelength of $1310 nm$ within a bandwidth of $0.7 nm$. The quantum properties of the pairs are measured using a two-photon coalescence experiment showing a visibility of 85%. The evaluated source brightness, on the order of $10^5$ pairs $s^{-1} GHz^{-1} mW^{-1}$, associated with its compactness and reliability, demonstrates the sources high potential for long-distance quantum communication.



قيم البحث

اقرأ أيضاً

We propose a method for the generation of a large variety of entangled states, encoded in the polarization degrees of freedom of N photons, within the same experimental setup. Starting with uncorrelated photons, emitted from N arbitrary single photon sources, and using linear optical tools only, we demonstrate the creation of all symmetric states, e.g., GHZ- and W-states, as well as all symmetric and non-symmetric total angular momentum eigenstates of the N qubit compound.
342 - Paul G. Kwiat 1998
Using the process of spontaneous parametric down conversion in a novel two-crystal geometry, one can generate a source of polarization-entangled photon pairs which is orders of magnitude brighter than previous sources. We have measured a high level o f entanglement between photons emitted over a relatively large collection angle, and over a 10-nm bandwidth. As a demonstration of the source intensity, we obtained a 242-$sigma$ violation of Bells inequalities in less than three minutes.
We present a source of polarization entangled photon pairs based on spontaneous parametric downconversion engineered for frequency uncorrelated telecom photon generation. Our source provides photon pairs that display, simultaneously, the key properti es for high-performance quantum information and fundamental quantum science tasks. Specifically, the source provides for high heralding efficiency, high quantum state purity and high entangled state fidelity at the same time. Among different tests we apply to our source we observe almost perfect non-classical interference between photons from independent sources with a visibility of $(100pm5)%$.
High-fidelity polarization-entangled photons are a powerful resource for quantum communication, distributing entanglement and quantum teleportation. The Bell-CHSH inequality $Sleq2$ is violated by bipartite entanglement and only maximally entangled s tates can achieve $S=2sqrt{2}$, the Tsirelson bound. Spontaneous parametric down-conversion sources can produce entangled photons with correlations close to the Tsirelson bound. Sagnac configurations offer intrinsic stability, compact footprint and high collection efficiency, however, there is often a trade off between source brightness and entanglement visibility. Here, we present a Sagnac polarization-entangled source with $2sqrt{2}-S=(5.65pm0.57)times10^{-3}$, on-par with the highest values recorded, while generating and detecting $(4660pm70)$ pairs/s/mW, which is a substantially higher brightness than previously reported for Sagnac sources and around two orders of magnitude brighter than for traditional cone sources with the highest $S$ parameter. Our source records $0.9953pm0.0003$ concurrence and $0.99743pm0.00014$ fidelity to an ideal Bell state. By studying systematic errors in Sagnac sources, we identify that the precision of the collection focal point inside the crystal plays the largest role in reducing the $S$ parameter in our experiment. We provide a pathway that could enable the highest $S$ parameter recorded with a Sagnac source to-date while maintaining very high brightness.
We present results of a bright polarization-entangled photon source operating at 1552 nm via type-II collinear degenerate spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate crystal. We report a conservative inf erred pair generation rate of 123,000 pairs/s/mW into collection modes. Minimization of spectral and spatial entanglement was achieved by group velocity matching the pump, signal and idler modes and through properly focusing the pump beam. By utilizing a pair of calcite beam displacers, we are able to overlap photons from adjacent down-conversion processes to obtain polarization-entanglement visibility of 94.7 +/- 1.1% with accidentals subtracted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا