ترغب بنشر مسار تعليمي؟ اضغط هنا

Conducting interfaces between band insulating oxides: the LaGaO3/SrTiO3

219   0   0.0 ( 0 )
 نشر من قبل Paolo Perna Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the growth of the heterostructure LaGaO3/SrTiO3 yields the formation of a highly conductive interface. Our samples were carefully analyzed by high resolution electron microscopy, in order to assess their crystal perfection and to evaluate the abruptness of the interface. Their carrier density and sheet resistance are compared to the case of LaAlO3/SrTiO3 and a superconducting transition is found. The results open the route to widening the field of polar-non polar interfaces, pose some phenomenological constrains to their underlying physics and highlight the chance of tailoring their properties for future applications by adopting suitable polar materials.



قيم البحث

اقرأ أيضاً

175 - M. Salluzzo 2014
The conducting quasi-two dimensional electron system (q2DES) formed at the interface between LaAlO3 and SrTiO3 band insulators is confronting the condensed matter physics community with new paradigms. While the mechanism for the formation of the q2DE S is debated, new conducting interfaces have been discovered paving the way to possible applications in electronics, spintronics and optoelectronics. This chapter is an overview of the research on the LAO/STO sys-tem, presenting some of the most important results obtained in the last decade to clarify the mechanism of formation of the q2DES at the oxide interfaces and its peculiar electronic properties as compared to semiconducting 2D-electron gas.
229 - A. Ron , Y. Dagan 2014
We grow a tiled structure of insulating two dimensional LaAlO3/SrTiO3 interfaces composed of alternating one and three LaAlO3 unit cells. The boundary between two tiles is conducting. At low temperatures this conductance exhibits quantized steps as a function of gate voltage indicative of a one dimensional channel. The step size of half the quantum of conductance is an evidence for absence of spin degeneracy.
Fabricating complex transition metal oxides with a tuneable band gap without compromising their intriguing physical properties is a longstanding challenge. Here we examine the layered ferroelectric bismuth titanate and demonstrate that, by site-speci fic substitution with the Mott insulator lanthanum cobaltite, its band gap can be narrowed as much as one electron volt, while remaining strongly ferroelectric. We find that when a specific site in the host material is preferentially substituted, a split-off state responsible for the band gap reduction is created just below the conduction band of bismuth titanate. This provides a route for controlling the band gap in complex oxides for use in emerging oxide opto-electronic and energy applications.
The (001) surface of SrTiO3 were transformed from insulating to conducting after Ar+ irradiation, producing a quasi two-dimensional electron gas (2DEG). This conducting surface layer can introduce Rashba spin orbital coupling due to the broken invers ion symmetry normal to the plane. The spin splitting of such a surface has recently been demonstrated by magneto-resistance and angular resolved photoemission spectra measurements. Here we present experiments evidencing a large spin-charge conversion at the surface. We use spin pumping to inject a spin current from NiFe film into the surface, and measure the resulting charge current. The results indicate that the Rashba effect at the surface can be used for efficient charge-spin conversion, and the large efficiency is due to the multi-d-orbitals and surface corrugation. It holds great promise in oxide spintronics.
Interplay of spin, charge, orbital and lattice degrees of freedom in oxide heterostructures results in a plethora of fascinating properties, which can be exploited in new generations of electronic devices with enhanced functionalities. The paradigm e xample is the interface between the two band insulators LaAlO3 and SrTiO3 (LAO/STO) that hosts two-dimensional electron system (2DES). Apart from the mobile charge carriers, this system exhibits a range of intriguing properties such as field effect, superconductivity and ferromagnetism, whose fundamental origins are still debated. Here, we use soft-X-ray angle-resolved photoelectron spectroscopy to penetrate through the LAO overlayer and access charge carriers at the buried interface. The experimental spectral function directly identifies the interface charge carriers as large polarons, emerging from coupling of charge and lattice degrees of freedom, and involving two phonons of different energy and thermal activity. This phenomenon fundamentally limits the carrier mobility and explains its puzzling drop at high temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا