ﻻ يوجد ملخص باللغة العربية
The (001) surface of SrTiO3 were transformed from insulating to conducting after Ar+ irradiation, producing a quasi two-dimensional electron gas (2DEG). This conducting surface layer can introduce Rashba spin orbital coupling due to the broken inversion symmetry normal to the plane. The spin splitting of such a surface has recently been demonstrated by magneto-resistance and angular resolved photoemission spectra measurements. Here we present experiments evidencing a large spin-charge conversion at the surface. We use spin pumping to inject a spin current from NiFe film into the surface, and measure the resulting charge current. The results indicate that the Rashba effect at the surface can be used for efficient charge-spin conversion, and the large efficiency is due to the multi-d-orbitals and surface corrugation. It holds great promise in oxide spintronics.
We show that the growth of the heterostructure LaGaO3/SrTiO3 yields the formation of a highly conductive interface. Our samples were carefully analyzed by high resolution electron microscopy, in order to assess their crystal perfection and to evaluat
The interface between the band gap insulators LaAlO3 and SrTiO3 is known to host a highly mobile two-dimensional electron gas. Here we report on the fabrication and characterization of the NdGaO3/SrTiO3 interface, that shares with LaAlO3/SrTiO3 an al
Two-dimensional electron gas (2DEG) formed at the interface between SrTiO3 (STO) and LaAlO3 (LAO) insulating layer is supposed to possess strong Rashba spin-orbit coupling. To date, the inverse Edelstein effect (i.e. spin-to-charge conversion) in the
A d-orbital electron has an anisotropic electron orbital and is a source of magnetism. The realization of a 2-dimensional electron gas (2DEG) embedded at a LaAlO3/SrTiO3 interface surprised researchers in materials and physical sciences because the 2
Interplay of spin, charge, orbital and lattice degrees of freedom in oxide heterostructures results in a plethora of fascinating properties, which can be exploited in new generations of electronic devices with enhanced functionalities. The paradigm e