ﻻ يوجد ملخص باللغة العربية
The underlying physics of neutrino oscillation in vacuum can be demonstrated by an optical analogical experiment. Two different neutrino flavors are represented by two polarization states of a laser beam, whereas the different phase propagation in vacuum is mimicked by the propagation difference of an ordinary and an extraordinary beam in a birefringent crystal. This allows us to demonstrate neutrino oscillation by optical methods in a fully microscopic way at the particle level. The description of both realizations of oscillation is also mathematically identical. In our demonstration experiment we can vary the oscillation parameters such as propagation length L and mixing angle Theta.
Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokan
In order to address some fundamental questions in neutrino physics a wide, future programme of neutrino oscillation experiments is currently under discussion. Among those, long baseline experiments will play a crucial role in providing information on
The disappearance of reactor antineutrinos in the Double Chooz experiment is used to investigate the possibility of neutrino-antineutrino oscillations arising due to the breakdown of Lorentz invariance. We find no evidence for this phenomenon and set
The ENUBET facility is a proposed narrow band neutrino beam where lepton production is monitored at single particle level in the instrumented decay tunnel. This facility addresses simultaneously the two most important challenges for the next generati
Photons carry one unit of angular momentum associated with their spin~cite{Beth1936}. Structured vortex beams carry additional orbital angular momentum which can also be transferred to matter~cite{Allen1992}. This extra twist has been used for exampl