ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for neutrino-antineutrino oscillations with a reactor experiment

237   0   0.0 ( 0 )
 نشر من قبل Joshua Spitz
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The disappearance of reactor antineutrinos in the Double Chooz experiment is used to investigate the possibility of neutrino-antineutrino oscillations arising due to the breakdown of Lorentz invariance. We find no evidence for this phenomenon and set the first limits on 15 coefficients describing neutrino-antineutrino mixing within the framework of the Standard-Model Extension.



قيم البحث

اقرأ أيضاً

The investigation of the oscillation pattern induced by the sterile neutrinos might determine the oscillation parameters, and at the same time, allow to probe CPT symmetry in the leptonic sector through neutrino-antineutrino mass inequality. We propo se to use a large scintillation detector like JUNO or LENA to detect electron neutrinos and electron antineutrinos from MCi electron capture or beta decay sources. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the current research plans for JUNO and RENO. Requiring at least 5$sigma$ confidence level and assuming the values of the oscillation parameters indicated by the current global fit, we would be able to detect neutrino-antineutrino mass inequality of the order of 0.5% or larger, which would imply a signal of CPT anomalies.
Recently new reactor antineutrino spectra have been provided for 235U, 239Pu, 241Pu and 238U, increasing the mean flux by about 3 percent. To good approximation, this reevaluation applies to all reactor neutrino experiments. The synthesis of publishe d experiments at reactor-detector distances <100 m leads to a ratio of observed event rate to predicted rate of 0.976(0.024). With our new flux evaluation, this ratio shifts to 0.943(0.023), leading to a deviation from unity at 98.6% C.L. which we call the reactor antineutrino anomaly. The compatibility of our results with the existence of a fourth non-standard neutrino state driving neutrino oscillations at short distances is discussed. The combined analysis of reactor data, gallium solar neutrino calibration experiments, and MiniBooNE-neutrino data disfavors the no-oscillation hypothesis at 99.8% C.L. The oscillation parameters are such that |Delta m_{new}^2|>1.5 eV^2 (95%) and sin^2(2theta_{new})=0.14(0.08) (95%). Constraints on the theta13 neutrino mixing angle are revised.
This presentation describes a measurement of the neutrino mixing parameter, sin^2(2theta_13), from the Daya Bay Reactor Neutrino Experiment. Disappearance of electron antineutrinos at a distance of ~2 km from a set of six reactors, where the reactor flux is constrained by near detectors, has been clearly observed. The result, based on the ratio of observed to expected rate of antineutrinos, using 139 days of data taken between December 24, 2011 and May 11, 2012, is sin^2(2theta_13) = 0.089 +/- 0.010(stat.) +/- 0.005(syst.). Improvements in sensitivity from inclusion of additional data, spectral analysis, and improved calibration are expected in the future.
101 - K. Abe , R. Akutsu , A. Ali 2018
The T2K experiment measures muon neutrino disappearance and electron neutrino appearance in accelerator-produced neutrino and antineutrino beams. With an exposure of $14.7(7.6)times 10^{20}$ protons on target in neutrino (antineutrino) mode, 89 $ u_e $ candidates and 7 anti-$ u_e$ candidates were observed while 67.5 and 9.0 are expected for $delta_{CP}=0$ and normal mass ordering. The obtained $2sigma$ confidence interval for the $CP$ violating phase, $delta_{CP}$, does not include the $CP$-conserving cases ($delta_{CP}=0,pi$). The best-fit values of other parameters are $sin^2theta_{23} = 0.526^{+0.032}_{-0.036}$ and $Delta m^2_{32}=2.463^{+0.071}_{-0.070}times10^{-3} mathrm{eV}^2/c^4$.
We present a search for Lorentz violation with 8249 candidate electron antineutrino events taken by the Double Chooz experiment in 227.9 live days of running. This analysis, featuring a search for a sidereal time dependence of the events, is the firs t test of Lorentz invariance using a reactor-based antineutrino source. No sidereal variation is present in the data and the disappearance results are consistent with sidereal time independent oscillations. Under the Standard-Model Extension (SME), we set the first limits on fourteen Lorentz violating coefficients associated with transitions between electron and tau flavor, and set two competitive limits associated with transitions between electron and muon flavor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا