ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of time and storing conditions on iron forms in ferrous gluconate and Ascofer

39   0   0.0 ( 0 )
 نشر من قبل Jakub Cieslak Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Antianemic medicament Ascofer and ferrous gluconate, its basic iron bearing ingredient, were studied with the use of Mossbauer spectroscopy. Room temperature spectra gave a clear evidence that two phases of iron were present viz. ferrous (Fe2+) as a major one with a contribution of 85+-5%, and ferric (Fe3+) whose contribution was found to be 15+-5%. However, the actual values of the contributions of the two kind of the iron ions in Ascofer depend on samples age: the abundance of Fe2+ ions increases with time by 10% after 51 months, while that of Fe3+ decreases by the same amount. This means that an internal reduction of Fe3+ ions takes place. Ferrous ions were shown to occupy at least two different sites. In Ascofer, the relative abundance of the two sites does not depend on the age of sample, while in the gluconate the population of site 1 increases and that of site 2 decreases with the age of the sample.

قيم البحث

اقرأ أيضاً

Let D be a smoothly bounded domain in a complex vector space of dimension n. Suppose that D has a smooth defining function, such that the sum of any q eigenvalues of its complex Hessian are non-negative on the closure of D. We show that this implies global regularity of the Bergman projection on (0,j)-forms for j larger or equal to q-1.
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same $_2F_1$ hypergeometric function with different rational pullbacks. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus $_2F_1$ hypergeometric function example. We then focus on identities relating the same hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that emerged in a paper by Casale. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to $_3F_2$, hypergeometric functions, and show that one just reduces to the previous $_2F_1$ cases through a Clausen identity. In a $_2F_1$ hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or $_2F_1$ hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
Fe-gluconate, Fe(C_6H_11O_7_2xH_2O is a well-known material widely used for iron supplementation. On the other hand, it is used in food industry as a coloring agent, in cosmetic industry for skin and nail conditioning and metallurgy. Despite of wide range of applications its physical properties were not studied extensively. In this study, Fe-gluconate with three different amount of water viz. x=2 (fully hydrated, 0 < x < 2 (intermediate) and x=0 (dry) was investigated by means of X-ray diffraction (XRD) and Mossbauer spectroscopic (MS) methods. The former in the temperature range of 20-300 K, and the latter at 295 K. Based on the XRD measurements crystallographic structures were determined: monoclinic (space group I2) for the hydrated sample and triclinic (space group P1) for the dry sample. The partially hydrated sample was two-phased. Unit cells parameters for both structures show strong, very complex and non-monotonic temperature dependences. Mossbauer spectroscopic measurements gave evidence that iron in all samples exist in form of Fe(II) and Fe(III) ions. The amount of the latter equals to ca.30% in the hydrated sample and to ca.20% in the dry one.
The Earth acts as a gigantic heat engine driven by decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes, and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core b y a dynamo running on heat released by cooling and freezing to grow the solid inner core, and on chemical convection due to light elements expelled from the liquid on freezing. The power supplied to the geodynamo, measured by the heat-flux across the core-mantle boundary (CMB), places constraints on Earths evolution. Estimates of CMB heat-flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent difficulties in experimentation and theory. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles- the first directly computed values that do not rely on estimates based on extrapolations. The mixtures of Fe, O, S, and Si are taken from earlier work and fit the seismologically-determined core density and inner-core boundary density jump. We find both conductivities to be 2-3 times higher than estimates in current use. The changes are so large that core thermal histories and power requirements must be reassessed. New estimates of adiabatic heat-flux give 15-16 TW at the CMB, higher than present estimates of CMB heat-flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted and future models of mantle evolution must incorporate a high CMB heat-flux and explain recent formation of the inner core.
111 - Petr Somberg , Petr Zima 2020
We study invariant systems of PDEs defining Killing vector-valued forms, and then we specialize to Killing spinor-valued forms. We give a detailed treatment of their prolongation and integrability conditions by relating the point-wise values of solut ions to the curvature of the underlying manifold. As an example, we completely solve the equations on model spaces of constant curvature producing brand new solutions which do not come from the tensor product of Killing spinors and Killing-Yano forms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا