ﻻ يوجد ملخص باللغة العربية
Fe-gluconate, Fe(C_6H_11O_7_2xH_2O is a well-known material widely used for iron supplementation. On the other hand, it is used in food industry as a coloring agent, in cosmetic industry for skin and nail conditioning and metallurgy. Despite of wide range of applications its physical properties were not studied extensively. In this study, Fe-gluconate with three different amount of water viz. x=2 (fully hydrated, 0 < x < 2 (intermediate) and x=0 (dry) was investigated by means of X-ray diffraction (XRD) and Mossbauer spectroscopic (MS) methods. The former in the temperature range of 20-300 K, and the latter at 295 K. Based on the XRD measurements crystallographic structures were determined: monoclinic (space group I2) for the hydrated sample and triclinic (space group P1) for the dry sample. The partially hydrated sample was two-phased. Unit cells parameters for both structures show strong, very complex and non-monotonic temperature dependences. Mossbauer spectroscopic measurements gave evidence that iron in all samples exist in form of Fe(II) and Fe(III) ions. The amount of the latter equals to ca.30% in the hydrated sample and to ca.20% in the dry one.
Low temperature Mossbauer spectroscopic and magnetization measurements were performed on a crystalline sample of Fe-gluconate. Fe atoms were revealed to exist in two phases i.e. a major (90-94 pct.) and a minor (6-10 pct.). Based on values of spectra
Amorphous Fe-gluconate was studied by means of the X-ray diffraction and Mossbauer spectroscopy. Spectra measured in the temperature range between 78 and 295 K were analysed in terms of three doublets using a thin absorber approximation method. Two o
Autonomous materials discovery with desired properties is one of the ultimate goals for modern materials science. Applying the deep learning techniques, we have developed a generative model which can predict distinct stable crystal structures by opti
The crystal structures of potassium and cesium bistrifluoroacetates were determined at room temperature and at 20 K and 14 K, respectively, with the single crystal neutron diffraction technique. The crystals belong to the I2/a and A2/a monoclinic spa
Fe, Mg, and O are among the most abundant elements in terrestrial planets. While the behavior of the Fe-O, Mg-O, and Fe-Mg binary systems under pressure have been investigated, there are still very few studies of the Fe-Mg-O ternary system at relevan