ترغب بنشر مسار تعليمي؟ اضغط هنا

Consequences of spectrograph illumination for the accuracy of radial-velocimetry

132   0   0.0 ( 0 )
 نشر من قبل Isabelle Boisse
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For fiber-fed spectrographs with a stable external wavelength source, scrambling properties of optical fibers and, homogeneity and stability of the instrument illumination are important for the accuracy of radial-velocimetry. Optical cylindric fibers are known to have good azimuthal scrambling. In contrast, the radial one is not perfect. In order to improve the scrambling ability of the fiber and to stabilize the illumination, optical double scrambler are usually coupled to the fibers. Despite that, our experience on SOPHIE and HARPS has lead to identified remaining radial-velocity limitations due to the non-uniform illumination of the spectrograph. We conducted tests on SOPHIE with telescope vignetting, seeing variation and centering errors on the fiber entrance. We simulated the light path through the instrument in order to explain the radial velocity variation obtained with our tests. We then identified the illumination stability and uniformity has a critical point for the extremely high-precision radial velocity instruments (ESPRESSO@VLT, CODEX@E-ELT). Tests on square and octagonal section fibers are now under development and SOPHIE will be used as a bench test to validate these new feed optics.



قيم البحث

اقرأ أيضاً

This paper presents an overview of SPIRou, the new-generation near-infrared spectropolarimeter / precision velocimeter recently installed on the 3.6-m Canada-France-Hawaii Telescope (CFHT). Starting from the two main science goals, namely the quest f or planetary systems around nearby M dwarfs and the study of magnetized star / planet formation, we outline the instrument concept that was designed to efficiently address these forefront topics, and detail the in-lab and on-sky instrument performances measured throughout the intensive testing phase that SPIRou was submitted to before passing the final acceptance review in early 2019 and initiating science observations. With a central position among the newly started programmes, the SPIRou Legacy Survey (SLS) Large Programme was allocated 300 CFHT nights until at least mid 2022. We also briefly describe a few of the first results obtained in the various science topics that SPIRou started investigating, focusing in particular on planetary systems of nearby M dwarfs, transiting exoplanets and their atmospheres, magnetic fields of young stars, but also on alternate science goals like the atmospheres of M dwarfs and the Earths atmosphere. We finally conclude on the essential role that SPIRou and the CFHT can play in coordination with forthcoming major facilities like the JWST, the ELTs, PLATO and ARIEL over the decade.
The EXtreme PREcision Spectrograph (EXPRES) is a new Doppler spectrograph designed to reach a radial velocity measurement precision sufficient to detect Earth-like exoplanets orbiting nearby, bright stars. We report on extensive laboratory testing an d on-sky observations to quantitatively assess the instrumental radial velocity measurement precision of EXPRES, with a focused discussion of individual terms in the instrument error budget. We find that EXPRES can reach a single-measurement instrument calibration precision better than 10 cm/s, not including photon noise from stellar observations. We also report on the performance of the various environmental, mechanical, and optical subsystems of EXPRES, assessing any contributions to radial velocity error. For atmospheric and telescope related effects, this includes the fast tip-tilt guiding system, atmospheric dispersion compensation, and the chromatic exposure meter. For instrument calibration, this includes the laser frequency comb (LFC), flat-field light source, CCD detector, and effects in the optical fibers. Modal noise is mitigated to a negligible level via a chaotic fiber agitator, which is especially important for wavelength calibration with the LFC. Regarding detector effects, we empirically assess the impact on radial velocity precision due to pixel-position non-uniformities (PPNU) and charge transfer inefficiency (CTI). EXPRES has begun its science survey to discover exoplanets orbiting G-dwarf and K-dwarf stars, in addition to transit spectroscopy and measurements of the Rossiter-McLaughlin effect.
MAROON-X is a red-optical, high precision radial velocity spectrograph currently nearing completion and undergoing extensive performance testing at the University of Chicago. The instrument is scheduled to be installed at Gemini North in the first qu arter of 2019. MAROON-X will be the only RV spectrograph on a large telescope with full access by the entire US community. In these proceedings we discuss the latest addition of the red wavelength arm and the two science grade detector systems, as well as the design and construction of the telescope front end. We also present results from ongoing RV stability tests in the lab. First results indicate that MAROON-X can be calibrated at the sub-m/s level, and perhaps even much better than that using a simultaneous reference approach.
The dispersed fixed-delay interferometer (DFDI) represents a new instrument concept for high-precision radial velocity (RV) surveys for extrasolar planets. A combination of Michelson interferometer and medium-resolution spectrograph, it has the poten tial for performing multi-object surveys, where most previous RV techniques have been limited to observing only one target at a time. Because of the large sample of extrasolar planets needed to better understand planetary formation, evolution, and prevalence, this new technique represents a logical next step in instrumentation for RV extrasolar planet searches, and has been proven with the single-object Exoplanet Tracker (ET) at Kitt Peak National Observatory, and the multi-object W. M. Keck/MARVELS Exoplanet Tracker at Apache Point Observatory. The development of the ET instruments has necessitated fleshing out a detailed understanding of the physical principles of the DFDI technique. Here we summarize the fundamental theoretical material needed to understand the technique and provide an overview of the physics underlying the instruments working. We also derive some useful analytical formulae that can be used to estimate the level of various sources of error generic to the technique, such as photon shot noise when using a fiducial reference spectrum, contamination by secondary spectra (e.g., crowded sources, spectroscopic binaries, or moonlight contamination), residual interferometer comb, and reference cross-talk error. Following this, we show that the use of a traditional gas absorption fiducial reference with a DFDI can incur significant systematic errors that must be taken into account at the precision levels required to detect extrasolar planets.
High fidelity iodine spectra provide the wavelength and instrument calibration needed to extract precise radial velocities (RVs) from stellar spectral observations taken through iodine cells. Such iodine spectra are usually taken by a Fourier Transfo rm Spectrometer (FTS). In this work, we investigated the reason behind the discrepancy between two FTS spectra of the iodine cell used for precise RV work with the High Resolution Spectrograph (HRS) at the Hobby-Eberly Telescope. We concluded that the discrepancy between the two HRS FTS spectra was due to temperature changes of the iodine cell. Our work demonstrated that the ultra-high resolution spectra taken by the TS12 arm of the Tull Spectrograph One at McDonald Observatory are of similar quality to the FTS spectra and thus can be used to validate the FTS spectra. Using the software IodineSpec5, which computes the iodine absorption lines at different temperatures, we concluded that the HET/HRS cell was most likely not at its nominal operating temperature of 70 degree Celsius during its FTS scan at NIST or at the TS12 measurement. We found that extremely high resolution echelle spectra (R>200,000) can validate and diagnose deficiencies in FTS spectra. We also recommend best practices for temperature control and nightly calibration of iodine cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا