ترغب بنشر مسار تعليمي؟ اضغط هنا

MAROON-X: A Radial Velocity Spectrograph for the Gemini Observatory

81   0   0.0 ( 0 )
 نشر من قبل Andreas Seifahrt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MAROON-X is a red-optical, high precision radial velocity spectrograph currently nearing completion and undergoing extensive performance testing at the University of Chicago. The instrument is scheduled to be installed at Gemini North in the first quarter of 2019. MAROON-X will be the only RV spectrograph on a large telescope with full access by the entire US community. In these proceedings we discuss the latest addition of the red wavelength arm and the two science grade detector systems, as well as the design and construction of the telescope front end. We also present results from ongoing RV stability tests in the lab. First results indicate that MAROON-X can be calibrated at the sub-m/s level, and perhaps even much better than that using a simultaneous reference approach.



قيم البحث

اقرأ أيضاً

MAROON-X is a fiber-fed, red-optical, high precision radial velocity spectrograph recently commissioned at the Gemini North telescope on Mauna Kea, Hawaii. With a resolving power of 85,000 and a wavelength coverage of 500-920 nm, it delivers radial v elocity measurements for late K and M dwarfs with sub-50 cm s$^{-1}$ precision. MAROON-X is currently the only optical EPRV spectrograph on a 8m-class telescope in the northern hemisphere and the only EPRV instrument on a large telescope with full access by the entire US community. We report here on the results of the commissioning campaign in December 2019 and early science results.
The Gemini Planet Imager (GPI) is a complex optical system designed to directly detect the self-emission of young planets within two arcseconds of their host stars. After suppressing the starlight with an advanced AO system and apodized coronagraph, the dominant residual contamination in the focal plane are speckles from the atmosphere and optical surfaces. Since speckles are diffractive in nature their positions in the field are strongly wavelength dependent, while an actual companion planet will remain at fixed separation. By comparing multiple images at different wavelengths taken simultaneously, we can freeze the speckle pattern and extract the planet light adding an order of magnitude of contrast. To achieve a bandpass of 20%, sufficient to perform speckle suppression, and to observe the entire two arcsecond field of view at diffraction limited sampling, we designed and built an integral field spectrograph with extremely low wavefront error and almost no chromatic aberration. The spectrograph is fully cryogenic and operates in the wavelength range 1 to 2.4 microns with five selectable filters. A prism is used to produce a spectral resolution of 45 in the primary detection band and maintain high throughput. Based on the OSIRIS spectrograph at Keck, we selected to use a lenslet-based spectrograph to achieve an rms wavefront error of approximately 25 nm. Over 36,000 spectra are taken simultaneously and reassembled into image cubes that have roughly 192x192 spatial elements and contain between 11 and 20 spectral channels. The primary dispersion prism can be replaced with a Wollaston prism for dual polarization measurements. The spectrograph also has a pupil-viewing mode for alignment and calibration.
We report on the development and construction of a new fiber-fed, red-optical, high-precision radial-velocity spectrograph for one of the twin 6.5m Magellan Telescopes in Chile. MAROON-X will be optimized to find and characterize rocky planets around nearby M dwarfs with an intrinsic per measurement noise floor below 1 m/s. The instrument is based on a commercial echelle spectrograph customized for high stability and throughput. A microlens array based pupil slicer and double scrambler, as well as a rubidium-referenced etalon comb calibrator will turn this spectrograph into a high-precision radial-velocity machine. MAROON-X will undergo extensive lab tests in the second half of 2016.
We report on the design and construction of a microlens-array (MLA)-based pupil slicer and double scrambler for MAROON-X, a new fiber-fed, red-optical, high-precision radial-velocity spectrograph for one of the twin 6.5m Magellan Telescopes in Chile. We have constructed a 3X slicer based on a single cylindrical MLA and show that geometric efficiencies of >85% can be achieved, limited by the fill factor and optical surface quality of the MLA. We present here the final design of the 3x pupil slicer and double scrambler for MAROON-X, based on a dual MLA design with (a)spherical lenslets. We also discuss the techniques used to create a pseudo-slit of rectangular core fibers with low FRD levels.
For fiber-fed spectrographs with a stable external wavelength source, scrambling properties of optical fibers and, homogeneity and stability of the instrument illumination are important for the accuracy of radial-velocimetry. Optical cylindric fibers are known to have good azimuthal scrambling. In contrast, the radial one is not perfect. In order to improve the scrambling ability of the fiber and to stabilize the illumination, optical double scrambler are usually coupled to the fibers. Despite that, our experience on SOPHIE and HARPS has lead to identified remaining radial-velocity limitations due to the non-uniform illumination of the spectrograph. We conducted tests on SOPHIE with telescope vignetting, seeing variation and centering errors on the fiber entrance. We simulated the light path through the instrument in order to explain the radial velocity variation obtained with our tests. We then identified the illumination stability and uniformity has a critical point for the extremely high-precision radial velocity instruments (ESPRESSO@VLT, CODEX@E-ELT). Tests on square and octagonal section fibers are now under development and SOPHIE will be used as a bench test to validate these new feed optics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا