ﻻ يوجد ملخص باللغة العربية
This paper investigates maximizers of the information divergence from an exponential family $E$. It is shown that the $rI$-projection of a maximizer $P$ to $E$ is a convex combination of $P$ and a probability measure $P_-$ with disjoint support and the same value of the sufficient statistics $A$. This observation can be used to transform the original problem of maximizing $D(cdot||E)$ over the set of all probability measures into the maximization of a function $Dbar$ over a convex subset of $ker A$. The global maximizers of both problems correspond to each other. Furthermore, finding all local maximizers of $Dbar$ yields all local maximizers of $D(cdot||E)$. This paper also proposes two algorithms to find the maximizers of $Dbar$ and applies them to two examples, where the maximizers of $D(cdot||E)$ were not known before.
The problem to maximize the information divergence from an exponential family is generalized to the setting of Bregman divergences and suitably defined Bregman families.
The Contrastive Divergence (CD) algorithm has achieved notable success in training energy-based models including Restricted Boltzmann Machines and played a key role in the emergence of deep learning. The idea of this algorithm is to approximate the i
Renyi divergence is related to Renyi entropy much like Kullback-Leibler divergence is related to Shannons entropy, and comes up in many settings. It was introduced by Renyi as a measure of information that satisfies almost the same axioms as Kullback
This paper considers the information bottleneck (IB) problem of a Rayleigh fading multiple-input multiple-out (MIMO) channel. Due to the bottleneck constraint, it is impossible for the oblivious relay to inform the destination node of the perfect cha
In this paper, we introduce the Age of Incorrect Information (AoII) as an enabler for semantics-empowered communication, a newly advocated communication paradigm centered around datas role and its usefulness to the communications goal. First, we shed