ترغب بنشر مسار تعليمي؟ اضغط هنا

Information Bottleneck for an Oblivious Relay with Channel State Information: the Vector Case

239   0   0.0 ( 0 )
 نشر من قبل Hao Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers the information bottleneck (IB) problem of a Rayleigh fading multiple-input multiple-out (MIMO) channel. Due to the bottleneck constraint, it is impossible for the oblivious relay to inform the destination node of the perfect channel state information (CSI) in each channel realization. To evaluate the bottleneck rate, we provide an upper bound by assuming that the destination node can get the perfect CSI at no cost and two achievable schemes with simple symbol-by-symbol relay processing and compression. Numerical results show that the lower bounds obtained by the proposed achievable schemes can come close to the upper bound on a wide range of relevant system parameters.



قيم البحث

اقرأ أيضاً

This paper considers the information bottleneck (IB) problem of a Rayleigh fading multiple-input multiple-out (MIMO) channel with an oblivious relay. The relay is constrained to operate without knowledge of the codebooks, i.e., it performs oblivious processing. Moreover, due to the bottleneck constraint, it is impossible for the relay to inform the destination node of the perfect channel state information (CSI) in each channel realization. To evaluate the bottleneck rate, we first provide an upper bound by assuming that the destination node can get the perfect CSI at no cost. Then, we provide four achievable schemes where each scheme satisfies the bottleneck constraint and gives a lower bound to the bottleneck rate. In the first and second schemes, the relay splits the capacity of the relay-destination link into two parts, and conveys both the CSI and its observation to the destination node. Due to CSI transmission, the performance of these two schemes is sensitive to the MIMO channel dimension, especially the channel input dimension. To ensure that it still performs well when the channel dimension grows large, in the third and fourth achievable schemes, the relay only transmits compressed observation to the destination node. Numerical results show that with simple symbol-by-symbol oblivious relay processing and compression, the proposed achievable schemes work well and can demonstrate lower bounds coming quite close to the upper bound on a wide range of relevant system parameters.
The rising interest in applications requiring the transmission of small amounts of data has recently lead to the development of accurate performance bounds and of powerful channel codes for the transmission of short-data packets over the AWGN channel . Much less is known about the interaction between error control coding and channel estimation at short blocks when transmitting over channels with states (e.g., fading channels, phase-noise channels, etc...) for the setup where no a priori channel state information (CSI) is available at the transmitter and the receiver. In this paper, we use the mismatched-decoding framework to characterize the fundamental tradeoff occurring in the transmission of short data packet over an AWGN channel with unknown gain that stays constant over the packet. Our analysis for this simplified setup aims at showing the potential of mismatched decoding as a tool to design and analyze transmission strategies for short blocks. We focus on a pragmatic approach where the transmission frame contains a codeword as well as a preamble that is used to estimate the channel (the codeword symbols are not used for channel estimation). Achievability and converse bounds on the block error probability achievable by this approach are provided and compared with simulation results for schemes employing short low-density parity-check codes. Our bounds turn out to predict accurately the optimal trade-off between the preamble length and the redundancy introduced by the channel code.
149 - Jialing Liu , Nicola Elia , 2010
In this paper, we propose capacity-achieving communication schemes for Gaussian finite-state Markov channels (FSMCs) subject to an average channel input power constraint, under the assumption that the transmitters can have access to delayed noiseless output feedback as well as instantaneous or delayed channel state information (CSI). We show that the proposed schemes reveals connections between feedback communication and feedback control.
A network consisting of $n$ source-destination pairs and $m$ relays is considered. Focusing on the large system limit (large $n$), the throughput scaling laws of two-hop relaying protocols are studied for Rayleigh fading channels. It is shown that, u nder the practical constraints of single-user encoding-decoding scheme, and partial channel state information (CSI) at the transmitters (via integer-value feedback from the receivers), the maximal throughput scales as $log n$ even if full relay cooperation is allowed. Furthermore, a novel decentralized opportunistic relaying scheme with receiver CSI, partial transmitter CSI, and no relay cooperation, is shown to achieve the optimal throughput scaling law of $log n$.
79 - Shuqin Pang , Wenyi Zhang 2021
Information transmission over a multiple-input-multiple-output (MIMO) fading channel with imperfect channel state information (CSI) is investigated, under a new receiver architecture which combines the recently proposed generalized nearest neighbor d ecoding rule (GNNDR) and a successive procedure in the spirit of successive interference cancellation (SIC). Recognizing that the channel input-output relationship is a nonlinear mapping under imperfect CSI, the GNNDR is capable of extracting the information embedded in the joint observation of channel output and imperfect CSI more efficiently than the conventional linear scheme, as revealed by our achievable rate analysis via generalized mutual information (GMI). Numerical results indicate that the proposed scheme achieves performance close to the channel capacity with perfect CSI, and significantly outperforms the conventional pilot-assisted scheme, which first estimates the CSI and then uses the estimated CSI as the true one for coherent decoding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا