ترغب بنشر مسار تعليمي؟ اضغط هنا

The Age of Incorrect Information: an Enabler of Semantics-Empowered Communication

79   0   0.0 ( 0 )
 نشر من قبل Ali Maatouk
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce the Age of Incorrect Information (AoII) as an enabler for semantics-empowered communication, a newly advocated communication paradigm centered around datas role and its usefulness to the communications goal. First, we shed light on how the traditional communication paradigm, with its role-blind approach to data, is vulnerable to performance bottlenecks. Next, we highlight the shortcomings of several proposed performance measures destined to deal with the traditional communication paradigms limitations, namely the Age of Information (AoI) and the error-based metrics. We also show how the AoII addresses these shortcomings and captures more meaningfully the purpose of data. Afterward, we consider the problem of minimizing the average AoII in a transmitter-receiver pair scenario where packets are sent over an unreliable channel subject to a transmission rate constraint. We prove that the optimal transmission strategy is a randomized threshold policy, and we propose a low complexity algorithm that finds both the optimal threshold and the randomization parameter. Furthermore, we provide a theoretical comparison between the AoII framework and the standard error-based metrics counterpart. Interestingly, we show that the AoII-optimal policy is also error-optimal for the adopted information source model. At the same time, the converse is not necessarily true. Finally, we implement our proposed policy in various real-life applications, such as video streaming, and we showcase its performance advantages compared to both the error-optimal and the AoI-optimal policies.



قيم البحث

اقرأ أيضاً

Age of Incorrect Information (AoII) is a newly introduced performance metric that considers communication goals. Therefore, comparing with traditional performance metrics and the recently introduced metric - Age of Information (AoI), AoII achieves be tter performance in many real-life applications. However, the fundamental nature of AoII has been elusive so far. In this paper, we consider the AoII in a system where a transmitter sends updates about a multi-state Markovian source to a remote receiver through an unreliable channel. The communication goal is to minimize AoII subject to a power constraint. We cast the problem into a Constrained Markov Decision Process (CMDP) and prove that the optimal policy is a mixture of two deterministic threshold policies. Afterward, by leveraging the notion of Relative Value Iteration (RVI) and the structural properties of threshold policy, we propose an efficient algorithm to find the threshold policies as well as the mixing coefficient. Lastly, numerical results are laid out to highlight the performance of AoII-optimal policy.
Wireless connectivity has traditionally been regarded as an opaque data pipe carrying messages, whose context-dependent meaning and effectiveness have been ignored. Nevertheless, in emerging cyber-physical and autonomous networked systems, acquiring, processing, and sending excessive amounts of distributed real-time data, which ends up being stale or useless to the end user, will cause communication bottlenecks, increased latency, and safety issues. We envision a communication paradigm shift, which makes the Semantics of Information, i.e., the significance and the usefulness of messages with respect to the goal of data exchange, the underpinning of the entire communication process. This entails a goal-oriented unification of information generation, transmission, and usage, by taking into account process dynamics, signal sparsity, data correlation, and semantic information attributes. We apply this structurally new, synergetic approach to a communication scenario where the destination is tasked with real-time source reconstruction for the purpose of remote actuation. Capitalizing on semantics-empowered sampling and communication policies, we show significant reduction in both reconstruction error and cost of actuation error, as well as in the number of uninformative samples generated.
A communication setup is considered where a transmitter wishes to convey a message to a receiver and simultaneously estimate the state of that receiver through a common waveform. The state is estimated at the transmitter by means of generalized feedb ack, i.e., a strictly causal channel output, and the known waveform. The scenario at hand is motivated by joint radar and communication, which aims to co-design radar sensing and communication over shared spectrum and hardware. For the case of memoryless single receiver channels with i.i.d. time-varying state sequences, we fully characterize the capacity-distortion tradeoff, defined as the largest achievable rate below which a message can be conveyed reliably while satisfying some distortion constraints on state sensing. We propose a numerical method to compute the optimal input that achieves the capacity-distortion tradeoff. Then, we address memoryless state-dependent broadcast channels (BCs). For physically degraded BCs with i.i.d. time-varying state sequences, we characterize the capacity-distortion tradeoff region as a rather straightforward extension of single receiver channels. For general BCs, we provide inner and outer bounds on the capacity-distortion region, as well as a sufficient condition when this capacity-distortion region is equal to the product of the capacity region and the set of achievable distortions. A number of illustrative examples demonstrates that the optimal co-design schemes outperform conventional schemes that split the resources between sensing and communication.
Sensor sources submit updates to a monitor through an unslotted, uncoordinated, unreliable multiple access collision channel. The channel is unreliable; a collision-free transmission is received successfully at the monitor with some transmission succ ess probability. For an infinite-user model in which the sensors collectively transmit updates as a Poisson process and each update has an independent exponential transmission time, a stochastic hybrid system (SHS) approach is used to derive the average age of information (AoI) as a function of the offered load and the transmission success probability. The analysis is then extended to evaluate the individual age of a selected source. When the number of sources and update transmission rate grow large in fixed proportion, the limiting asymptotic individual age is shown to provide an accurate individual age approximation for a small number of sources.
We consider a wireless communication network with an adaptive scheme to select the number of packets to be admitted and encoded for each transmission, and characterize the information timeliness. For a network of erasure channels and discrete time, w e provide closed form expressions for the Average and Peak Age of Information (AoI) as functions of admission control and adaptive coding parameters, the feedback delay, and the maximum feasible end-to-end rate that depends on channel conditions and network topology. These new results guide the system design for robust improvements of the AoI when transmitting time sensitive information in the presence of topology and channel changes. We illustrate the benefits of using adaptive packet coding to improve information timeliness by characterizing the network performance with respect to the AoI along with its relationship to throughput (rate of successfully decoded packets at the destination) and per-packet delay. We show that significant AoI performance gains can be obtained in comparison to the uncoded case, and that these gains are robust to network variations as channel conditions and network topology change.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا