ﻻ يوجد ملخص باللغة العربية
We investigate the particle and kinetic-energy densities for a system of $N$ fermions bound in a local (mean-field) potential $V(bfr)$. We generalize a recently developed semiclassical theory [J. Roccia and M. Brack, Phys. Rev. Lett. {bf 100}, 200408 (2008)], in which the densities are calculated in terms of the closed orbits of the corresponding classical system, to $D>1$ dimensions. We regularize the semiclassical results $(i)$ for the U(1) symmetry breaking occurring for spherical systems at $r=0$ and $(ii)$ near the classical turning points where the Friedel oscillations are predominant and well reproduced by the shortest orbit going from $r$ to the closest turning point and back. For systems with spherical symmetry, we show that there exist two types of oscillations which can be attributed to radial and non-radial orbits, respectively. The semiclassical theory is tested against exact quantum-mechanical calculations for a variety of model potentials. We find a very good overall numerical agreement between semiclassical and exact numerical densities even for moderate particle numbers $N$. Using a local virial theorem, shown to be valid (except for a small region around the classical turning points) for arbitrary local potentials, we can prove that the Thomas-Fermi functional $tau_{text{TF}}[rho]$ reproduces the oscillations in the quantum-mechanical densities to first order in the oscillating parts.
We investigate the particle and kinetic-energy densities for $N$ non-interacting fermions confined in a local potential. Using Gutzwillers semi-classical Green function, we describe the oscillating parts of the densities in terms of closed non-period
We present a case study for the semiclassical calculation of the oscillations in the particle and kinetic-energy densities for the two-dimensional circular billiard. For this system, we can give a complete classification of all closed periodic and no
The out-of-time-order correlator (OTOC), recently analyzed in several physical contexts, is studied for low-dimensional chaotic systems through semiclassical expansions and numerical simulations. The semiclassical expansion for the OTOC yields a lead
In this paper we outline the construction of semiclassical eigenfunctions of integrable models in terms of the semiclassical path integral for the Poisson sigma model with the target space being the phase space of the integrable system. The semiclass
A new approach to the theory of anisotropic exciton based on Fock transformation, i.e., on a stereographic projection of the momentum to the unit 4-dimensional (4D) sphere, is developed. Hyperspherical functions are used as a basis of the perturbatio