ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiclassical theory for spatial density oscillations in fermionic systems

149   0   0.0 ( 0 )
 نشر من قبل Matthias Brack
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the particle and kinetic-energy densities for a system of $N$ fermions bound in a local (mean-field) potential $V(bfr)$. We generalize a recently developed semiclassical theory [J. Roccia and M. Brack, Phys. Rev. Lett. {bf 100}, 200408 (2008)], in which the densities are calculated in terms of the closed orbits of the corresponding classical system, to $D>1$ dimensions. We regularize the semiclassical results $(i)$ for the U(1) symmetry breaking occurring for spherical systems at $r=0$ and $(ii)$ near the classical turning points where the Friedel oscillations are predominant and well reproduced by the shortest orbit going from $r$ to the closest turning point and back. For systems with spherical symmetry, we show that there exist two types of oscillations which can be attributed to radial and non-radial orbits, respectively. The semiclassical theory is tested against exact quantum-mechanical calculations for a variety of model potentials. We find a very good overall numerical agreement between semiclassical and exact numerical densities even for moderate particle numbers $N$. Using a local virial theorem, shown to be valid (except for a small region around the classical turning points) for arbitrary local potentials, we can prove that the Thomas-Fermi functional $tau_{text{TF}}[rho]$ reproduces the oscillations in the quantum-mechanical densities to first order in the oscillating parts.



قيم البحث

اقرأ أيضاً

We investigate the particle and kinetic-energy densities for $N$ non-interacting fermions confined in a local potential. Using Gutzwillers semi-classical Green function, we describe the oscillating parts of the densities in terms of closed non-period ic classical orbits. We derive universal relations between the oscillating parts of the densities for potentials with spherical symmetry in arbitrary dimensions, and a ``local virial theorem valid also for arbitrary non-integrable potentials. We give simple analytical formulae for the density oscillations in a one-dimensional potential.
We present a case study for the semiclassical calculation of the oscillations in the particle and kinetic-energy densities for the two-dimensional circular billiard. For this system, we can give a complete classification of all closed periodic and no n-periodic orbits. We discuss their bifurcations under variation of the starting point r and derive analytical expressions for their properties such as actions, stability determinants, momentum mismatches and Morse indices. We present semiclassical calculations of the spatial density oscillations using a recently developed closed-orbit theory [Roccia J and Brack M 2008 Phys. Rev. Lett. 100 200408], employing standard uniform approximations from perturbation and bifurcation theory, and test the convergence of the closed-orbit sum.
The out-of-time-order correlator (OTOC), recently analyzed in several physical contexts, is studied for low-dimensional chaotic systems through semiclassical expansions and numerical simulations. The semiclassical expansion for the OTOC yields a lead ing-order contribution in $hbar^2$ that is exponentially increasing with time within an intermediate, temperature-dependent, time-window. The growth-rate in such a regime is governed by the Lyapunov exponent of the underlying classical system and scales with the square-root of the temperature.
In this paper we outline the construction of semiclassical eigenfunctions of integrable models in terms of the semiclassical path integral for the Poisson sigma model with the target space being the phase space of the integrable system. The semiclass ical path integral is defined as a formal power series with coefficients being Feynman diagrams. We also argue that in a similar way one can obtain irreducible semiclassical representations of Kontsevichs star product.
A new approach to the theory of anisotropic exciton based on Fock transformation, i.e., on a stereographic projection of the momentum to the unit 4-dimensional (4D) sphere, is developed. Hyperspherical functions are used as a basis of the perturbatio n theory. The binding energies, wave functions and oscillator strengths of elongated as well as flattened excitons are obtained numerically. It is shown that with an increase of the anisotropy degree the oscillator strengths are markedly redistributed between optically active and formerly inactive states, making the latter optically active. An approximate analytical solution of the anisotropic exciton problem taking into account the angular momentum conserving terms is obtained. This solution gives the binding energies of moderately anisotropic exciton with a good accuracy and provides a useful qualitative description of the energy level evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا