ﻻ يوجد ملخص باللغة العربية
We present a case study for the semiclassical calculation of the oscillations in the particle and kinetic-energy densities for the two-dimensional circular billiard. For this system, we can give a complete classification of all closed periodic and non-periodic orbits. We discuss their bifurcations under variation of the starting point r and derive analytical expressions for their properties such as actions, stability determinants, momentum mismatches and Morse indices. We present semiclassical calculations of the spatial density oscillations using a recently developed closed-orbit theory [Roccia J and Brack M 2008 Phys. Rev. Lett. 100 200408], employing standard uniform approximations from perturbation and bifurcation theory, and test the convergence of the closed-orbit sum.
We investigate the particle and kinetic-energy densities for $N$ non-interacting fermions confined in a local potential. Using Gutzwillers semi-classical Green function, we describe the oscillating parts of the densities in terms of closed non-period
We investigate the particle and kinetic-energy densities for a system of $N$ fermions bound in a local (mean-field) potential $V(bfr)$. We generalize a recently developed semiclassical theory [J. Roccia and M. Brack, Phys. Rev. Lett. {bf 100}, 200408
A simple expression for the zeros of Weierstrass function is given which follows from a formula for relativistic orbits.
We propose a formula for the enumeration of closed lattice random walks of length $n$ enclosing a given algebraic area. The information is contained in the Kreft coefficients which encode, in the commensurate case, the Hofstadter secular equation for
For the Restricted Circular Planar 3 Body Problem, we show that there exists an open set $mathcal U$ in phase space independent of fixed measure, where the set of initial points which lead to collision is $O(mu^frac{1}{20})$ dense as $murightarrow 0$.