ﻻ يوجد ملخص باللغة العربية
We report the identification of 17 candidate brown dwarf binaries whose components straddle the L dwarf/T dwarf transition. These sources were culled from a large near-infrared spectral sample of L and T dwarfs observed with the Infrared Telescope Facility SpeX spectrograph. Candidates were selected on the basis of spectral ratios which segregate known (resolved) L dwarf/T dwarf pairs from presumably single sources. Composite templates, constructed by combining 13581 pairs of absolute flux-calibrated spectra, are shown to provide statistically superior fits to the spectra of our seventeen candidates as compared to single templates. Ten of these candidates appear to have secondary components that are significantly brighter than their primaries over the 1.0-1.3 micron band, indicative of rapid condensate depletion at the L dwarf/T dwarf transition. Our results support prior indications of enhanced multiplicity amongst early-type T dwarfs; 53+/-7% of the T0-T4 dwarfs in our spectral sample are found to be either resolved or unresolved (candidate) pairs, although this is consistent with an intrinsic (volume complete) brown dwarf binary fraction of only 15%. If verified, this sample of spectral binaries more than doubles the number of known L dwarf/T dwarf transition pairs, enabling a broader exploration of this poorly-understood phase of brown dwarf atmospheric evolution.
We present a new suite of atmosphere models with flexible cloud parameters to investigate the effects of clouds on brown dwarfs across the L/T transition. We fit these models to a sample of 13 objects with well-known masses, distances, and spectral t
Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation history. In this paper, we present the candidate binaries with brown dwarf companions tha
We estimate the merger rate of double degenerate binaries containing extremely low mass (ELM) <0.3 Msun white dwarfs in the Galaxy. Such white dwarfs are detectable for timescales of 0.1 Gyr -- 1 Gyr in the ELM Survey; the binaries they reside in hav
Stars are stretched by tidal interactions in tight binaries, and changes to their projected areas introduce photometric variations twice per orbit. Hermes et al. (2014, ApJ, 792, 39) utilized measurements of these ellipsoidal variations to constrain
We present the first results from our high-precision infrared (IR) astrometry program at the Canada-France-Hawaii Telescope. We measure parallaxes for 83 ultracool dwarfs (spectral types M6--T9) in 49 systems, with a median uncertainty of 1.1 mas (2.