ترغب بنشر مسار تعليمي؟ اضغط هنا

Microlensig Binaries with Candidate Brown Dwarf Companions

121   0   0.0 ( 0 )
 نشر من قبل Cheongho Han
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation history. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing events discovered during 2004 - 2011 observation seasons. Based on the low mass ratio criterion of q < 0.2, we found 7 candidate events, including OGLE-2004-BLG-035, OGLE-2004-BLG-039, OGLE-2007-BLG-006, OGLE-2007-BLG-399/MOA-2007-BLG-334, MOA-2011-BLG-104/OGLE-2011-BLG-0172, MOA-2011-BLG-149, and MOA-201-BLG-278/OGLE-2011-BLG-012N. Among them, we are able to confirm that the companions of the lenses of MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149 are brown dwarfs by determining the mass of the lens based on the simultaneous measurement of the Einstein radius and the lens parallax. The measured mass of the brown dwarf companions are (0.02 +/- 0.01) M_Sun and (0.019 +/- 0.002) M_Sun for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events with well covered light curves increases with new generation searches.



قيم البحث

اقرأ أيضاً

147 - S. Geier , T. Kupfer , U. Heber 2015
Hot subdwarfs (sdBs) are core helium-burning stars, which lost almost their entire hydrogen envelope in the red-giant phase. Since a high fraction of those stars are in close binary systems, common envelope ejection is an important formation channel. We identified a total population of 51 close sdB+WD binaries based on time-resolved spectroscopy and multi-band photometry, derive the WD mass distribution and constrain the future evolution of these systems. Most WDs in those binaries have masses significantly below the average mass of single WDs and a high fraction of them might therefore have helium cores. We found 12 systems that will merge in less than a Hubble time and evolve to become either massive C/O WDs, AM,CVn systems, RCrB stars or even explode as supernovae type Ia.
It is well-known that stars with giant planets are on average more metal-rich than stars without giant planets, whereas stars with detected low-mass planets do not need to be metal-rich. With the aim of studying the weak boundary that separates giant planets and brown dwarfs (BDs) and their formation mechanism, we analyze the spectra of a sample of stars with already confirmed BD companions both by radial velocity and astrometry. We employ standard and automatic tools to perform an EW-based analysis and to derive chemical abundances from CORALIE spectra of stars with BD companions. We compare these abundances with those of stars without detected planets and with low-mass and giant-mass planets. We find that stars with BDs do not have metallicities and chemical abundances similar to those of giant-planet hosts but they resemble the composition of stars with low-mass planets. The distribution of mean abundances of $alpha$-elements and iron peak elements of stars with BDs exhibit a peak at about solar abundance whereas for stars with low-mass and high-mass planets the [X$_alpha$/H] and [X$_{rm Fe}$/H] peak abundances remain at $sim -0.1$~dex and $sim +0.15$~dex, respectively. We display these element abundances for stars with low-mass and high-mass planets, and BDs versus the minimum mass, $m_C sin i$, of the most-massive substellar companion in each system, and we find a maximum in $alpha$-element as well as Fe-peak abundances at $m_C sin i sim 1.35pm 0.20$ jupiter masses. We discuss the implication of these results in the context of the formation scenario of BDs in comparison with that of giant planets.
114 - V. Joergens , S. Reffert 2014
The astrometric space mission Gaia is expected to detect a large number of brown dwarf binary systems with close orbits and determine astrometric orbit solutions. This will provide key information for the formation and evolution of brown dwarfs, such as the binary frequency and dynamical masses. Known brown dwarf binaries with orbit constraints from other techniques will play an important role. We are carrying out one of the most precise and long-lasting radial velocity surveys for brown dwarf binaries in the Cha I star-forming region at the VLT. We were able to add two orbit determinations to the small group of a handful of brown dwarf and very low-mass binaries with characterized RV orbits. We show here that the astrometric motion of both systems can be detected with Gaia. We predict an astrometric signal of about 1.2 - 1.6 milliarcseconds (mas) for the brown dwarf binary ChaHa8 and of 0.4 - 0.8 mas for the very low-mass binary CHXR74. We take the luminosity of the companion into account for these estimates and present a relation for the astrometric signature of a companion with non-negligible luminosity.
120 - D. R. Gies , R. A. Matson , Z. Guo 2015
Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclips ing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.
Short-timescale microlensing events are likely to be produced by substellar brown dwarfs (BDs), but it is difficult to securely identify BD lenses based on only event timescales $t_{rm E}$ because short-timescale events can also be produced by stella r lenses with high relative lens-source proper motions. In this paper, we report three strong candidate BD-lens events found from the search for lensing events not only with short timescales ($t_{rm E} lesssim 6~{rm days}$) but also with very small angular Einstein radii ($theta_{rm E}lesssim 0.05~{rm mas}$) among the events that have been found in the 2016--2019 observing seasons. These events include MOA-2017-BLG-147, MOA-2017-BLG-241, and MOA-2019-BLG-256, in which the first two events are produced by single lenses and the last event is produced by a binary lens. From the Bayesian analysis conducted with the combined $t_{rm E}$ and $theta_{rm E}$ constraint, it is estimated that the lens masses of the individual events are $0.051^{+0.100}_{-0.027}~M_odot$, $0.044^{+0.090}_{-0.023}~M_odot$, and $0.046^{+0.067}_{-0.023}~M_odot/0.038^{+0.056}_{-0.019}~M_odot$ and the probability of the lens mass smaller than the lower limit of stars is $sim 80%$ for all events. We point out that routine lens mass measurements of short time-scale lensing events require survey-mode space-based observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا