ﻻ يوجد ملخص باللغة العربية
The revealing properties of transition metal (T)-doped graphene systems are investigated with the use of the first-principles method. The detailed calculations cover the bond length, position and height of adatoms, binding energy, atom-dominated band structure, adatom-induced free carrier density as well as energy gap, spin-density distributions, spatial charge distribution, and atom-, orbital- and spin-projected density-of-states (DOS). The magnetic configurations are clearly identified from the total magnetic moments, spin-split energy bands, spin-density distributions and spin-decomposed DOS. Moreover, the single- or multi-orbital hybridizations in T-C, T-T, and C-C bonds can be accurately deduced from the careful analyses of the above-mentioned physical quantities. They are responsible for the optimal geometric structure, the unusual electronic properties, as well as the diverse magnetic properties. All the doped systems are metals except for the low-concentration Ni-doped ones with semiconducting behavior. In contrast, ferromagnetism is exhibited in various Fe/Co-concentrations but only under high Ni-concentrations. Our theoretical predictions are compared with available experimental data, and potential applications are also discussed.
Sodium, magnesium and aluminum adatoms, which, respectively, possess one, two and three valence electrons in terms of 3s, $3s^2$, and ($3s^2$, 3p) orbitals, are very suitable for helping us understand the adsorption-induced diverse phenomena. In this
We present a systematic investigation of molecule-metal interactions for transition-metal phthalocyanines (TMPc, with TM = Fe, Co, Ni, Cu) adsorbed on Ag(100). Scanning tunneling spectroscopy and density functional theory provide insight into the cha
The adsorption of aromatic molecules on metal surfaces plays a key role in condensed matter physics and functional materials. Depending on the strength of the interaction between the molecule and the surface, the binding is typically classified as ei
We study the effects of metallic doping on the electronic properties of graphene using density functional theory in the local density approximation in the presence of a local charging energy (LDA+U). The electronic properties are sensitive to whether
Ab initio calculation results for the electronic structure of disordered bcc Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6) alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl, NiAl) phases with poi