ﻻ يوجد ملخص باللغة العربية
The Adams operations $psi_Lambda^n$ and $psi_S^n$ on the Green ring of a group $G$ over a field $K$ provide a framework for the study of the exterior powers and symmetric powers of $KG$-modules. When $G$ is finite and $K$ has prime characteristic $p$ we show that $psi_Lambda^n$ and $psi_S^n$ are periodic in $n$ if and only if the Sylow $p$-subgroups of $G$ are cyclic. In the case where $G$ is a cyclic $p$-group we find the minimum periods and use recent work of Symonds to express $psi_S^n$ in terms of $psi_Lambda^n$.
We consider the Green ring $R_{KC}$ for a cyclic $p$-group $C$ over a field $K$ of prime characteristic $p$ and determine the Adams operations $psi^n$ in the case where $n$ is not divisible by $p$. This gives information on the decomposition into ind
We prove that if $B$ is a $p$-block with non-trivial defect group $D$ of a finite $p$-solvable group $G$, then $ell(B) < p^r$, where $r$ is the sectional rank of $D$. We remark that there are infinitely many $p$-blocks $B$ with non-Abelian defect gro
We prove that exterior powers of (skew-)symmetric bundles induce a $lambda$-ring structure on the ring $GW^0(X) oplus GW^2(X)$, when $X$ is a scheme where $2$ is invertible. Using this structure, we define stable Adams operations on Hermitian $K$-the
A p-local compact group is an algebraic object modelled on the p-local homotopy theory of classifying spaces of compact Lie groups and p-compact groups. In the study of these objects unstable Adams operations, are of fundamental importance. In this p
A $p$-local compact group is an algebraic object modelled on the homotopy theory associated with $p$-completed classifying spaces of compact Lie groups and p-compact groups. In particular $p$-local compact groups give a unified framework in which one