ترغب بنشر مسار تعليمي؟ اضغط هنا

Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2

87   0   0.0 ( 0 )
 نشر من قبل Simon Kimber Dr
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of a new family of high Tc materials, the iron arsenides (FeAs), has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent, for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. It is also now well established that the parent non-superconducting phases are itinerant magnets, and that superconductivity can be induced by either chemical substitution or application of pressure, in sharp contrast to the cuprate family of materials. The structure and properties of chemically substituted samples are known to be intimately linked, however, remarkably little is known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe2As2, namely suppression of the tetragonal to orthorhombic phase transition and reduction in the As-Fe-As bond angle and Fe-Fe distance, show the same behavior under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. These results suggest that modification of the Fermi surface by structural distortions is more important than charge doping for inducing superconductivity in BaFe2As2.



قيم البحث

اقرأ أيضاً

At ambient pressure CaFe2As2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low temperature orthorhombic / antiferromagnetic phase upon cooling through T ~ 170 K. With the application of pressu re this phase transition is rapidly suppressed and by ~ 0.35 GPa it is replaced by a first order phase transition to a low temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by ~ 1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe2As2 transforms when it is encased by a frozen media and enters into a low temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures.
Rattling-induced superconductivity in the {beta}-pyrochlore oxide KOs2O6 is investigated under high pressure up to 5 GPa. Resistivity measurements in a high-quality single crystal reveal a gradual decrease in the superconducting transition temperatur e Tc from 9.7 K at 1.0 GPa to 6.5 K at 3.5 GPa, followed by a sudden drop to 3.3 K at 3.6 GPa. Powder X-ray diffraction experiments show a structural transition from cubic to monoclinic or triclinic at a similar pressure. The sudden drop in Tc is ascribed to this structural tran-sition, by which an enhancement in Tc due to a strong electron-rattler interaction present in the low-pressure cubic phase is abrogated as the rattling of the K ion is completely suppressed or weakened in the high-pressure phase of reduced symmetry. In addition, we find two anomalies in the temperature dependence of resistivity in the low-pressure phase, which may be due to subtle changes in rattling vibration.
The effects of K and Co substitutions and quasi-hydrostatic applied pressure (P<9 GPa) in the local atomic structure of BaFe2As2, Ba(Fe{0.937}Co{0.063})2As2 and Ba{0.85}K{0.15}Fe2As2 superconductors were investigated by extended x-ray absorption fine structure (EXAFS) measurements in the As K absorption edge. The As-Fe bond length is found to be slightly reduced (<~ 0.01 Angstroms) by both Co and K substitutions, without any observable increment in the corresponding Debye Waller factor. Also, this bond is shown to be compressible (k = 3.3(3)x10^{-3} GPa^{-1}). The observed contractions of As-Fe bond under pressure and chemical substitutions are likely related with a reduction of the local Fe magnetic moments, and should be an important tuning parameter in the phase diagrams of the Fe-based superconductors.
The transition metal dichalcogenide PdTe$_2$ has attractive features based on its classification as a type-II Dirac semimetal and the occurrence of type-I superconductivity, providing a platform for discussion of a topological superconductor. Our rec ent work revealed that type-I superconductivity persists up to pressures of $sim2.5$ GPa and the superconducting transition temperature $T_{rm c}$ reaches a maximum at around 1 GPa, which is inconsistent with the theoretical prediction. To understand its non-monotonic variation and investigate superconductivity at higher pressures, we performed structural analysis by x-ray diffraction at room temperature below 8 GPa and electrical resistivity measurements at low temperatures from 1 to 8 GPa. With regard to the superconductivity beyond 1 GPa, the monotonic decrease in $T_{rm c}$ is reproduced without any noticeable anomalies; $T_{rm c}$ changes from 1.8 K at 1 GPa to 0.82 K at 5.5 GPa with $dT_{rm c}/dPsim-0.22$ K/GPa. The crystal structure with spacegroup $P$={3}$m$1 is stable in the pressure range we examined. On the other hand, the normalized pressure-strain analysis (finite strain analysis) indicates that the compressibility changes around 1 GPa, suggesting that a Lifshitz transition occurs. We here discuss the effect of pressure on the superconducting and structural properties based on the comparison of these experimental results.
Study and comparison of over 30 examples of electron doped BaFe2As2 for transition metal (TM) = Co, Ni, Cu, and (Co/Cu mixtures) have lead to an understanding that the suppression of the structural/antiferromagnetic phase transition to low enough tem perature in these compounds is a necessary condition for superconductivity, but not a sufficient one. Whereas the structural/antiferromagnetic transitions are suppressed by the number of TM dopant ions (or changes in the c-axis) the superconducting dome exists over a limited range of values of the number of electrons added by doping (or values of the {a/c} ratio). By choosing which combination of dopants are used we can change the relative positions of the upper phase lines and the superconducting dome, even to the extreme limit of suppressing the upper structural and magnetic phase transitions without the stabilization of low temperature superconducting dome.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا