ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting and Structural Transitions in the {beta}-Pyrochlore Oxide KOs2O6 under High Pressure

123   0   0.0 ( 0 )
 نشر من قبل Zenji Hiroi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rattling-induced superconductivity in the {beta}-pyrochlore oxide KOs2O6 is investigated under high pressure up to 5 GPa. Resistivity measurements in a high-quality single crystal reveal a gradual decrease in the superconducting transition temperature Tc from 9.7 K at 1.0 GPa to 6.5 K at 3.5 GPa, followed by a sudden drop to 3.3 K at 3.6 GPa. Powder X-ray diffraction experiments show a structural transition from cubic to monoclinic or triclinic at a similar pressure. The sudden drop in Tc is ascribed to this structural tran-sition, by which an enhancement in Tc due to a strong electron-rattler interaction present in the low-pressure cubic phase is abrogated as the rattling of the K ion is completely suppressed or weakened in the high-pressure phase of reduced symmetry. In addition, we find two anomalies in the temperature dependence of resistivity in the low-pressure phase, which may be due to subtle changes in rattling vibration.



قيم البحث

اقرأ أيضاً

Resistivity and specific heat have been measured on a single crystalline sample of the beta-pyrochlore oxide superconductor, KOs2O6. It is found that a second peak in specific heat, which may evidence an unknown phase transition, appears around Tp ~ 7.5 K below the superconducting transition temperature Tc = 9.53 K. Applying magnetic fields up to 14 T, Tc is reduced gradually down to 7.1 K, while Tp is raised a little and becomes even higher than Tc at 14 T, which implies that the second anomaly is not associated directly with the superconductivity. It is demonstrated, however, that there is significant communication between the two anomalies, suggesting that they come from the same electrons. It is also reported that the Sommerfeld coefficient ? in KOs2O6 is possibly much larger than in other members of beta-pyrochlore oxide superconductors, RbOs2O6 (Tc = 6.3 K) and CsOs2O6 (Tc = 3.3 K).
Superconducting and structural phase transitions in a pyrochlore oxide Cd2Re2O7 are studied under high pressure by x-ray diffraction and electrical resistivity measurements. A rich P-T phase diagram is obtained, which contains at least two phases wit h the ideal and slightly distorted pyrochlore structures. It is found that the transition between them is suppressed with increasing pressure and finally disappears at a critical pressure Pc = 3.5 GPa. Remarkable enhancements in the residual resistivity as well as the coefficient A of the AT 2 term in the resistivity are found around the critical pressure. Superconductivity is detected only for the phase with the structural distortion. It is suggested that the charge fluctuations of Re ions play a crucial role in determining the electronic properties of Cd2Re2O7.
245 - Z. Hiroi , S. Yonezawa , Y. Nagao 2007
Superconducting and normal-state properties of the beta-pyrochlore oxide KOs2O6 are studied by means of thermodynamic and transport measurements. It is shown that the superconductivity is of conventional s-wave type and lies in the extremely strong-c oupling regime. Specific heat and resistivity measurements reveal that there are characteristic low-energy phonons that give rise to unusual scattering of carriers due to strong electron-phonon interactions. The entity of the low-energy phonons is ascribed to the heavy rattling of the K ion confined in an oversized cage made of OsO6 octahedra. It is suggested that this electron-rattler coupling mediates the Cooper pairing, resulting in the extremely strong-coupling superconductivity.
At ambient pressure CaFe2As2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low temperature orthorhombic / antiferromagnetic phase upon cooling through T ~ 170 K. With the application of pressu re this phase transition is rapidly suppressed and by ~ 0.35 GPa it is replaced by a first order phase transition to a low temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by ~ 1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe2As2 transforms when it is encased by a frozen media and enters into a low temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures.
To assess electron correlation and electron-phonon coupling in the recently discovered beta-pyrochlores KOs2O6 and RbOs2O6, we have performed specific heat measurements in magnetic fields up to 14 T. We present data from high quality single crystalli ne KOs2O6, showing that KOs2O6 is a strong coupling superconductor with a coupling parameter lambda_ep approx 1.0 to 1.6 (RbOs2O6: lambda_ep approx 1). The estimated Sommerfeld coefficient of KOs2O6, gamma=76 to 110 mJ/(mol K^2), is twice that of RbOs2O6 [gamma=44 mJ/(mol K^2)]. Using strong-coupling corrections, we extract useful thermodynamic parameters of KOs2O6. Quantifying lambda_ep allows us to determine the mass enhancement over the calculated band electronic density of states. A significant contribution in addition to the electron-phonon term of lambda_c=1.7 to 4.3 is deduced. In an effort to understand the origin of the enhancement mechanism, we also investigate an unusual energetically low-lying phonon. There are three phonon modes per RbOs2O6, suggestive of the phonon source being the rattling motion of the alkali ion. This dynamic instability of the alkali ions causes large scattering of the charge carriers which shows up in an unusual temperature dependence of the electrical resistivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا