ترغب بنشر مسار تعليمي؟ اضغط هنا

Convexity of effective Lagrangian in nonlinear electrodynamics as derived from causality

108   0   0.0 ( 0 )
 نشر من قبل Anatoly Shabad
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In nonlinear electrodynamics, by implementing the causality principle as the requirement that the group velocity of elementary excitations over a background field should not exceed unity, and the unitarity principle as the requirement that the residue of the propagator should be nonnegative, we find restrictions on the behavior of massive and massless dispersion curves and establish the convexity of the effective Lagrangian on the class of constant fields, also the positivity of all characteristic dielectric and magnetic permittivity constants. Violation of the general principles by the one-loop approximation in QED at exponentially large magnetic field is analyzed resulting in complex energy tachyons and super-luminal ghosts that signal the instability of the magnetized vacuum. General grounds for kinematical selection rules in the process of photon splitting/merging are discussed.



قيم البحث

اقرأ أيضاً

78 - Steven Duplij 2019
A general approach is presented to describing nonlinear classical Maxwell electrodynamics with conformal symmetry. We introduce generalized nonlinear constitutive equations, expressed in terms of constitutive tensors dependent on conformal-invariant functionals of the field strengths. This allows a characterization of Lagrangian and non-Lagrangian theories. We obtain a general formula for possible Lagrangian densities in nonlinear conformal-invariant electrodynamics. This generalizes the standard Lagrangian of classical linear electrodynamics so as to preserve the conformal symmetry.
Curvature tensors of higher-spin gauge theories have been known for some time. In the past, they were postulated using a generalization of the symmetry properties of the Riemann tensor (curl on each index of a totally symmetric rank-$n$ field for eac h spin-$n$). For this reason they are sometimes referred to as the generalized Riemann tensors. In this article, a method for deriving these curvature tensors from first principles is presented; the derivation is completed without any a priori knowledge of the existence of the Riemann tensors or the curvature tensors of higher-spin gauge theories. To perform this derivation, a recently developed procedure for deriving exactly gauge invariant Lagrangian densities from quadratic combinations of $N$ order of derivatives and $M$ rank of tensor potential is applied to the $N = M = n$ case under the spin-$n$ gauge transformations. This procedure uniquely yields the Lagrangian for classical electrodynamics in the $N = M = 1$ case and the Lagrangian for higher derivative gravity (`Riemann and `Ricci squared terms) in the $N = M = 2$ case. It is proven here by direct calculation for the $N = M = 3$ case that the unique solution to this procedure is the spin-3 curvature tensor and its contractions. The spin-4 curvature tensor is also uniquely derived for the $N = M = 4$ case. In other words, it is proven here that, for the most general linear combination of scalars built from $N$ derivatives and $M$ rank of tensor potential, up to $N=M=4$, there exists a unique solution to the resulting system of linear equations as the contracted spin-$n$ curvature tensors. Conjectures regarding the solutions to the higher spin-$n$ $N = M = n$ are discussed.
We construct a Lagrangian for general nonlinear electrodynamics that features electric and magnetic potentials on equal footing. In the language of this Lagrangian, discrete and continuous electric-magnetic duality symmetries can be straightforwardly imposed, leading to a simple formulation for theories with the $SO(2)$ duality invariance. When specialized to the conformally invariant case, our construction provides a manifestly duality-symmetric formulation of the recently discovered ModMax theory. We briefly comment on a natural generalization of this approach to $p$-forms in $2p+2$ dimensions.
It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.
We investigate the causal structure of general nonlinear electrodynamics and determine which Lagrangians generate an effective metric conformal to Minkowski. We also proof that there is only one analytic nonlinear electrodynamics presenting no birefringence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا