ﻻ يوجد ملخص باللغة العربية
A general approach is presented to describing nonlinear classical Maxwell electrodynamics with conformal symmetry. We introduce generalized nonlinear constitutive equations, expressed in terms of constitutive tensors dependent on conformal-invariant functionals of the field strengths. This allows a characterization of Lagrangian and non-Lagrangian theories. We obtain a general formula for possible Lagrangian densities in nonlinear conformal-invariant electrodynamics. This generalizes the standard Lagrangian of classical linear electrodynamics so as to preserve the conformal symmetry.
Formalism of extended Lagrangian represent a systematic procedure to look for the local symmetries of a given Lagrangian action. In this work, the formalism is discussed and applied to a field theory. We describe it in detail for a field theory with
In nonlinear electrodynamics, by implementing the causality principle as the requirement that the group velocity of elementary excitations over a background field should not exceed unity, and the unitarity principle as the requirement that the residu
We show that the Power-Zienau-Woolley picture of the electrodynamics of nonrelativistic neutral particles (atoms) can be derived from a gauge-invariant Lagrangian without making reference to any gauge whatsoever in the process. This equivalence is in
Knotted solutions to electromagnetism are investigated as an independent subsector of the theory. We write down a Lagrangian and a Hamiltonian formulation of Batemans construction for the knotted electromagnetic solutions. We introduce a general defi
We study the properties of nonlinear superalgebras $mathcal{A}$ and algebras $mathcal{A}_b$ arising from a one-to-one correspondence between the sets of relations that extract AdS-group irreducible representations $D(E_0,s_1,s_2)$ in AdS$_d$-spaces a