ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical spin injection into Si(001) through a SiO2 tunnel barrier

126   0   0.0 ( 0 )
 نشر من قبل Connie Li
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate spin polarized tunneling from Fe through a SiO2 tunnel barrier into a Si n-i-p heterostructure. Transport measurements indicate that single step tunneling is the dominant transport mechanism. The circular polarization, Pcirc, of the electroluminescence (EL) shows that the tunneling spin polarization reflects Fe majority spin. Pcirc tracks the Fe magnetization, confirming that the spin-polarized electrons radiatively recombining in the Si originate from the Fe. A rate equation analysis provides a lower bound of 30% for the electron spin polarization in the Si at 5 K.



قيم البحث

اقرأ أيضاً

114 - L. Lombez , P. Renucci , P. Gallo 2006
We have demonstrated by electroluminescence the injection of spin polarized electrons through Co/Al2O3/GaAs tunnel barrier into p-doped InAs/GaAs quantum dots embedded in a PIN GaAs light emitting diode. The spin relaxation processes in the p-doped q uantum dots are characterized independently by optical measurements (time and polarization resolved photoluminescence). The measured electroluminescence circular polarization is about 15 % at low temperature in a 2T magnetic field, leading to an estimation of the electrical spin injection yield of 35%. Moreover, this electroluminescence circular polarization is stable up to 70 K.
We report electrical spin injection from a ferromagnetic metal contact into a semiconductor light emitting diode structure with an injection efficiency of 30% which persists to room temperature. The Schottky barrier formed at the Fe/AlGaAs interface provides a natural tunnel barrier for injection of spin polarized electrons under reverse bias. These carriers radiatively recombine, emitting circularly polarized light, and the quantum selection rules relating the optical and carrier spin polarizations provide a quantitative, model-independent measure of injection efficiency. This demonstrates that spin injecting contacts can be formed using a widely employed contact methodology, providing a ready pathway for the integration of spin transport into semiconductor processing technology.
278 - Phivos Mavropoulos 2008
We study the possibility of spin injection from Fe into Si(001), using the Schottky barrier at the Fe/Si contact as tunneling barrier. Our calculations are based on density-functional theory for the description of the electronic structure and on a La ndauer-Buttiker approach for the current. The current-carrying states correspond to the six conduction band minima of Si, which, when projected on the (001) surface Brillouin zone (SBZ), form five conductance hot spots: one at the SBZ center and four symmetric satellites. The satellites yield a current polarization of about 50%, while the SBZ center can, under very low gate voltage, yield up to almost 100%, showing a zero-gate anomaly. This extremely high polarization is traced back to the symmetry mismatch of the minority-spin Fe wavefunctions to the conduction band wavefunctions of Si at the SBZ center. The tunneling current is determined by the complex band structure of Si in the [001] direction, which shows qualitative differences compared to that of direct-gap semiconductors. Depending on the Fermi level position and Schottky barrier thickness, the complex band structure can cause the contribution of the satellites to be orders of magnitude higher or lower than the central contribution. Thus, by appropriate tuning of the interface properties, there is a possibility to cut off the satellite contribution and to reach high injection efficiency. Also, we find that a moderate strain of 0.5% along the [001] direction is sufficient to lift the degeneracy of the pockets so that only states at the zone center can carry current.
116 - P. Barate , S. Liang , T. T. Zhang 2020
An efficient electrical spin injection into an InGaAs/GaAs quantum well light emitting diode is demonstrated thanks to a CoFeB/MgO spin injector. The textured MgO tunnel barrier is fabricated by two different techniques: sputtering and molecular beam epitaxy (MBE). The maximal spin injection efficiency is comparable for both methods. Additionally, the effect of annealing is also investigated for the two types of samples. Both samples show the same trend: an increase of the electroluminescence circular polarization (Pc) with the increase of annealing temperature, followed by a saturation of Pc beyond 350{deg}C annealing. Since the increase of Pc starts well below the crystallization temperature of the full CoFeB bulk layer, this trend could be mainly due to an improvement of chemical structure at the top CoFeB/MgO interface. This study reveals that the control of CoFeB/MgO interface is essential important for an optimal spin injection into semiconductor.
154 - N. Nishizawa , , H. Munekata 2013
We report that an ultra-thin, post-oxidized aluminum epilayer grown on the AlGaAs surface works as a high-quality tunnel barrier for spin injection from a ferromagnetic metal to a semiconductor. One of the key points of the present oxidation method i s the formation of the crystalline AlOx template layer without oxidizing the AlGaAs region near the Al/AlGaAs interface. The oxidized Al layer is not amorphous but show well-defined single crystalline feature reminiscent of the spinel gamma-AlOx phase. A spin-LED consisting of an Fe layer, a crystalline AlOx barrier layer, and an AlGaAs-InGaAs double hetero-structure has exhibited circularly polarized electroluminescence with circular polarization of P_{EL} = 0.145 at the remnant magnetization state of the Fe layer, indicating the relatively high spin injection efficiency (epsilon = 2P_{EL} / P_{Fe}) of 0.63.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا