ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin injection from Fe into Si(001): ab initio calculations and role of the Si complex band structure

288   0   0.0 ( 0 )
 نشر من قبل Ph. Mavropoulos
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the possibility of spin injection from Fe into Si(001), using the Schottky barrier at the Fe/Si contact as tunneling barrier. Our calculations are based on density-functional theory for the description of the electronic structure and on a Landauer-Buttiker approach for the current. The current-carrying states correspond to the six conduction band minima of Si, which, when projected on the (001) surface Brillouin zone (SBZ), form five conductance hot spots: one at the SBZ center and four symmetric satellites. The satellites yield a current polarization of about 50%, while the SBZ center can, under very low gate voltage, yield up to almost 100%, showing a zero-gate anomaly. This extremely high polarization is traced back to the symmetry mismatch of the minority-spin Fe wavefunctions to the conduction band wavefunctions of Si at the SBZ center. The tunneling current is determined by the complex band structure of Si in the [001] direction, which shows qualitative differences compared to that of direct-gap semiconductors. Depending on the Fermi level position and Schottky barrier thickness, the complex band structure can cause the contribution of the satellites to be orders of magnitude higher or lower than the central contribution. Thus, by appropriate tuning of the interface properties, there is a possibility to cut off the satellite contribution and to reach high injection efficiency. Also, we find that a moderate strain of 0.5% along the [001] direction is sufficient to lift the degeneracy of the pockets so that only states at the zone center can carry current.



قيم البحث

اقرأ أيضاً

We demonstrate spin polarized tunneling from Fe through a SiO2 tunnel barrier into a Si n-i-p heterostructure. Transport measurements indicate that single step tunneling is the dominant transport mechanism. The circular polarization, Pcirc, of the el ectroluminescence (EL) shows that the tunneling spin polarization reflects Fe majority spin. Pcirc tracks the Fe magnetization, confirming that the spin-polarized electrons radiatively recombining in the Si originate from the Fe. A rate equation analysis provides a lower bound of 30% for the electron spin polarization in the Si at 5 K.
126 - O. Sikora , J. Kalt , M. Sternik 2019
The structure and dynamical properties of the Fe$_3$Si/GaAs(001) interface are investigated by density functional theory and nuclear inelastic scattering measurements. The stability of four different atomic configurations of the Fe$_3$Si/GaAs multila yers is analyzed by calculating the formation energies and phonon dispersion curves. The differences in charge density, magnetization, and electronic density of states between the configurations are examined. Our calculations unveil that magnetic moments of the Fe atoms tend to align in a plane parallel to the interface, along the [110] direction of the Fe$_3$Si crystallographic unit cell. In some configurations, the spin polarization of interface layers is larger than that of bulk Fe$_3$Si. The effect of the interface on element-specific and layer-resolved phonon density of states is discussed. The Fe-partial phonon density of states measured for the Fe$_3$Si layer thickness of three monolayers is compared with theoretical results obtained for each interface atomic configuration. The best agreement is found for one of the configurations with a mixed Fe-Si interface layer, which reproduces the anomalous enhancement of the phonon density of states below 10 meV
First-principles calculations using density functional theory based on norm-conserving pseudopotentials have been performed to investigate the Cs adsorption on the Si(001) surface for 0.5 and 1 ML coverages. We found that the saturation coverage corr esponds to 1 ML adsorption with two Cs atoms occupying the double layer model sites. While the 0.5 ML covered surface is of metallic nature, we found that 1 ML of Cs adsorption corresponds to saturation coverage and leads to a semiconducting surface. The results for the electronic behavior and surface work function suggest that adsorption of Cs takes place via polarized covalent bonding.
In this work the complete valence-band structure of the molybdenum dichalcogenides MoS_2, MoSe_2, and alpha-MoTe_2 is presented and discussed in comparison. The valence bands have been studied using both angle-resolved photoelectron spectroscopy (ARP ES) with synchrotron radiation, as well as, ab-initio band-structure calculations. The ARPES measurements have been carried out in the constant-final-state (CFS) mode. The results of the calculations show in general very good agreement with the experimentally determined valence-band structures allowing for a clear identification of the observed features. The dispersion of the valence bands as a function of the perpendicular component k_perp of the wave vector reveals a decreasing three-dimensional character from MoS_2 to alpha-MoTe_2 which is attributed to an increasing interlayer distance in the three compounds. The effect of this k_perp dispersion on the determination of the exact dispersion of the individual states as a function of k_parallel is discussed. By performing ARPES in the CFS mode the k_parallel-component for off-normal emission spectra can be determined. The corresponding k_perp-value is obtained from the symmetry of the spectra along the GammaA, KH, and ML line, respectively.
We present ab initio results at the density functional theory level for the energetics and kinetics of H_2 and CH_4 in the SI clathrate hydrate. Our results complement a recent article by some of the authors [G. Roman-Perez et al., Phys. Rev. Lett. 1 05, 145901 (2010)] in that we show additional results of the energy landscape of H_2 and CH_4 in the various cages of the host material, as well as further results for energy barriers for all possible diffusion paths of H_2 and CH_4 through the water framework. We also report structural data of the low-pressure phase SI and the higher-pressure phases SII and SH.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا