ﻻ يوجد ملخص باللغة العربية
Recently, we introduced a quantity, node weight, to describe the collaboration sharing or competition gain of the elements in the collaboration-competition networks, which can be well described by bipartite graphs. We find that the node weight distributions of all the networks follow the so-called shifted power law (SPL). The common distribution function may indicate that the evolution of the collaboration and competition in very different systems obeys a general rule. In order to set up a base of the further investigations on the universal system evolution dynamics, we now present the definition of the networks and their node weights, the node weight distributions, as well as the evolution durations of 15 real world collaboration-competition systems which are belonging to diverse fields.
Recently, our group quantitatively defined two quantities, competition ability and uniqueness (Chin. Phys. Lett. 26 (2009) 058901) for a kind of cooperation-competition bipartite networks, where producers produce some products and output them to a ma
Competition and collaboration are at the heart of multi-agent probabilistic spreading processes. The battle on public opinion and competitive marketing campaigns are typical examples of the former, while the joint spread of multiple diseases such as
Bipartite matching problem is to study two disjoint groups of agents who need to be matched pairwise. It can be applied to many real-world scenarios and explain many social phenomena. In this article, we study the effect of competition on bipartite m
Despite the abundance of bipartite networked systems, their organizing principles are less studied, compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the pro
We use the information present in a bipartite network to detect cores of communities of each set of the bipartite system. Cores of communities are found by investigating statistically validated projected networks obtained using information present in