ﻻ يوجد ملخص باللغة العربية
We perform detailed numerical simulations of field ion microscopy images of faceted crystals and compare them with experimental observations. In contrast to the case of crystals with a smooth surface, for a faceted topography we find extreme deformations of the ion image. Local magnification is highly inhomogeneous and may vary by an order of magnitude: from 0.64 to 6.7. Moreover, the anisotropy of the magnification at a point located on the facet edge may reach a factor of 10.
The surface stress and the contact potential differences of elastically deformed faces of Al, Cu, Au, Ni, and Ti crystals are calculated within the modified stabilized jellium model using the self-consistent Kohn-Sham method. The obtained values of t
Gapless criteria that can efficiently determine whether a crystal is gapless or not are particularly useful for identifying topological semimetals. In this work, we propose a sufficient gapless criterion for three-dimensional non-interacting crystals
The application of imaging techniques based on ensembles of nitrogen-vacancy (NV) sensors in diamond to characterise electrical devices has been proposed, but the compatibility of NV sensing with operational gated devices remains largely unexplored.
By means of the plane wave method, we study nonuniform, i.e., mode- and k-dependent, effects in the spin-wave spectrum of a two-dimensional bicomponent magnonic crystal. We use the crystal based on a hexagonal lattice squeezed in the direction of the
When graphene is deformed in a dynamical manner, a time-dependent potential is induced for the electrons. The potential is antisymmetric with respect to valleys, and some straightforward applications are found for Raman spectroscopy. We show that a v