ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Energy Stars and AdS/CFT

50   0   0.0 ( 0 )
 نشر من قبل George Chapline F
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف George Chapline




اسأل ChatGPT حول البحث

The theory of dark energy stars illustrates how the behavior of matter near to certain kinds of quantum critical phase transitions can be given a geometrical interpretation by regarding the criticality tuning parameter as an extra dimension. In the case of a superfluid with vanishing speed of sound, the implied geometry resembles 5-dimensional anti-de-Sitter. In a dark energy star this geometry applies both inside and outside the horizon radius, so the AdS-CFT correspondence is consistent with the idea that the surface of a compact astrophysical object represents a quantum critical phase transition of space-time. The superfluid transition in a chiron gas, which was originally proposed as a theory of high temperature superconductivity, may provide an exact theory of this transition.



قيم البحث

اقرأ أيضاً

We study isotropic and slowly-rotating stars made of dark energy adopting the extended Chaplygin equation-of-state. We compute the moment of inertia as a function of the mass of the stars, both for rotating and non-rotating objects. The solution for the non-diagonal metric component as a function of the radial coordinate for three different star masses is shown as well. We find that i) the moment of inertia increases with the mass of the star, ii) in the case of non-rotating objects the moment of inertia grows faster, and iii) the curve corresponding to rotation lies below the one corresponding to non-rotating stars.
65 - Roldao da Rocha 2021
AdS graviton stars are studied in the differential configurational entropy setup, as solutions of the effective Einstein field equations that backreact to compactification. With the critical central density of AdS graviton stars, the differential con figurational entropy is derived and computed, presenting global minima for a wide range of stellar mass magnitude orders. It indicates insular domains of configurational stability for AdS graviton stars near astrophysical neutron star densities. Other relevant features are also reported.
We investigate the properties of relativistic stars made of dark energy. We model stellar structure assuming i) isotropic perfect fluid and ii) a dark energy inspired equation of state, the generalized equation of state of Chaplygin gas, as we will b e calling it. The mass-to-radius profiles, the tidal Love numbers as well as the ten lowest radial oscillation modes are computed. Causality, stability and energy conditions are also discussed.
Searching for the effect of quintessence dark energy on the kinetics of black hole phase transition, we investigate in detail the dynamic phase transition of charged AdS black holes surrounded by quintessence in this paper. Based on the Gibbs free en ergy landscape, we obtain the analytic expression of the corresponding Gibbs free energy. As shown in $G_L-r_+$ curve at the phase transition temperature, there exist double wells with the same depth, providing further support on the finding in the former literature. By numerically solving the Fokker-Planck equation with both the initial condition and reflecting boundary condition imposed, we probe the probabilistic evolution of charged AdS black holes surrounded by quintessence. The peak denoting the initial black hole state gradually decreases while the other peak starts to grow from zero, approaching to be a stationary distribution in the long time limit with two peaks denoting the large and small black holes respectively. We also study the first passage process of charged AdS black holes surrounded by quintessence and discuss the relevant quantities. We resolve the Fokker-Planck equation by adding the absorbing boundary condition for the intermediate transition state. It is shown intuitively that the peaks located at the large (small) black hole decay very rapidly, irrespective of the initial black hole state. In all the procedures above, we have compared the cases with different choices of the state parameter of quintessence dark energy $omega_q$. The larger $omega_q$ is, the faster the initial black hole state decays, showing the effect of quintessence dark energy. To the best of our knowledge, it is the first probe on the influence of dark energy on the dynamic phase transition of charged AdS black hole.
We define and study a holographic dual to the topological twist of $mathcal{N}=4$ gauge theories on Riemannian three-manifolds. The gravity duals are solutions to four-dimensional $mathcal{N}=4$ gauged supergravity, where the three-manifold arises as a conformal boundary. Following our previous work, we show that the renormalized gravitational free energy of such solutions is independent of the boundary three-metric, as required for a topological theory. We then go further, analyzing the geometry of supersymmetric bulk solutions. Remarkably, we are able to show that the gravitational free energy of any smooth four-manifold filling of any three-manifold is always zero. Aided by this analysis, we prove a similar result for topological AdS$_5$/CFT$_4$. We comment on the implications of these results for the large $N$ limits of topologically twisted gauge theories in three and four dimensions, including the ABJM theory and $mathcal{N}=4$ $SU(N)$ super-Yang-Mills, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا