ﻻ يوجد ملخص باللغة العربية
AdS graviton stars are studied in the differential configurational entropy setup, as solutions of the effective Einstein field equations that backreact to compactification. With the critical central density of AdS graviton stars, the differential configurational entropy is derived and computed, presenting global minima for a wide range of stellar mass magnitude orders. It indicates insular domains of configurational stability for AdS graviton stars near astrophysical neutron star densities. Other relevant features are also reported.
In this work, we evaluate the Shannon-like entropic measure of spatially-localized functions for a five-dimensional braneworld generated by a double sine-Gordon (DSG) potential. The differential configurational entropy (DCE) has been shown in several
We consider the possibility of creating a graviton laser. The lasing medium would be a system of contained, ultra cold neutrons. Ultra cold neutrons are a quantum mechanical system that interacts with gravitational fields and with the phonons of the
The present work employs the Linder parametrization of a constant growth index cite{linder/index} to investigate the evolution of growth rate of clustering and the dissipation of configurational entropy in some of the most widely studied Chaplygin ga
The evolution of the configurational entropy of the universe relies on the growth rate of density fluctuations and on the Hubble parameter. In this work, I present the evolution of configurational entropy for the power-law $f(T)$ gravity model of the
The meson family of $eta$ pseudoscalars is studied in the context of the AdS/QCD correspondence and the differential configurational entropy (DCE). For it, two forms of configurational-entropic Regge-like trajectories are engendered, relating the $et