ترغب بنشر مسار تعليمي؟ اضغط هنا

TRIMOR - three-dimensional correlation technique to analyze multi-order spectra of triple stellar systems; Application to HD188753

39   0   0.0 ( 0 )
 نشر من قبل Avi Shporer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a new algorithm, TRIMOR, to analyse multi-order spectra of triple systems. The algorithm is an extension of TRICOR, the three-dimensional correlation technique that derives the radial velocities of triple stellar systems from single-order spectra. The combined correlation derived from many orders enables the detection and the measurement of radial velocities of faint tertiary companions. The paper applied TRIMOR to the already available spectra of HD188753, a well known triple system, yielding the radial velocities of the faintest star in the system. This rendered the close pair of the triple system a double-lined spectroscopic binary, which led to a precise mass-ratio and an estimate of its inclination. The close-pair inclination is very close to the inclination of the wide orbit, consistent with the assertion that this triple system has a close to coplanar configuration.

قيم البحث

اقرأ أيضاً

Context. HD 150136 is a triple hierarchical system and a non-thermal radio emitter. It is formed by an O3-3.5 V + O5.5-6 V close binary and a more distant O6.5-7 V tertiary. So far, only the inner orbital properties have been reliably constrained. Aims. To quantitatively understand the non-thermal emission process, accurate knowledge of the physical and orbital properties of the object is crucial. Here, we aim to investigate the orbital properties of the wide system and to constrain the inclinations of the inner and outer binaries, and with these the absolute masses of the system components. Methods. We used the PIONIER combiner at the Very Large Telescope Interferometer to obtain the very first interferometric measurements of HD 150136. We combined the interferometric observations with new and existing high resolution spectroscopic data to derive the orbital solution of the outer companion in the three-dimensional space. Results. The wide system is clearly resolved by PIONIER, with a projected separation on the plane of the sky of about 9 milli-arcsec. The best-fit orbital period, eccentricity, and inclination are 8.2 yr, 0.73 and 108 degr. We constrain the masses of the three stars of the system to 63 +/- 10, 40 +/- 6, and 33 +/- 12 Msun for the O3-3.5 V, O5.5-6 V and O6.5-7 V components. Conclusions. The dynamical masses agree within errors with the evolutionary masses of the components. Future interferometric and spectroscopic monitoring of HD 150136 should allow one to reduce the uncertainties to a few per cent only and to accurately constrain the distance to the system. This makes HD 150136 an ideal system to quantitatively test evolutionary models of high-mass stars as well as the physics of non-thermal processes occurring in O-type systems.
128 - Mengqi Xue , Yang Tang , Wei Ren 2020
Extended from the classic switched system, themulti-dimensional switched system (MDSS) allows for subsystems(switching modes) with different state dimensions. In this work,we study the stability problem of the MDSS, whose state transi-tion at each sw itching instant is characterized by the dimensionvariation and the state jump, without extra constraint imposed.Based on the proposed transition-dependent average dwell time(TDADT) and the piecewise TDADT methods, along with the pro-posed parametric multiple Lyapunov functions (MLFs), sufficientconditions for the practical and the asymptotical stabilities of theMDSS are respectively derived for the MDSS in the presenceof unstable subsystems. The stability results for the MDSS areapplied to the consensus problem of the open multi-agent system(MAS) which exhibits dynamic circulation behaviors. It is shownthat the (practical) consensus of the open MAS with disconnectedswitching topologies can be ensured by (practically) stabilizingthe corresponding MDSS with unstable switching modes via theproposed TDADT and parametric MLF methods.
Preparing for the expected wealth of Gaia detections, we consider here a simple algorithm for classifying unresolved astrometric binaries with main-sequence (MS) primary into three classes: binaries with a probable MS secondary, with two possible val ues for the mass ratio; probable hierarchical triple MS systems with an astrometric secondary as a close binary, with a limited range of mass-ratio values; and binaries with a compact-object secondary, with a minimal value of the mass ratio. This is done by defining a unit-less observational parameter Astrometric Mass-Ratio Function (AMRF), $mathcal{A}$, of a binary, based on primary-mass estimation, in addition to the astrometric parameters - the angular semi-major axis, the period and the parallax. We derive the $mathcal{A}$ value that differentiates the three classes by forward modeling representative binaries of each class, assuming some mass-luminosity relation.To demonstrate the potential of the algorithm, we consider the orbits of 98 Hipparcos astrometric binaries with main-sequence primaries, using the Hipparcos parallaxes and the primary-mass estimates. For systems with known spectroscopic orbital solution, our results are consistent with the spectroscopic elements, validating the suggested approach. The algorithm will be able to identify hierarchical triple systems and dormant neutron-star and black-hole companions in the Gaia astrometric binaries.
235 - V. Greco , A. Sordini , G. Cauzzi 2019
(Abridged): We define and test a new technique to accurately measure the cavity defects of air-spaced FPIs, including distortions due to the spectral tuning process typical of astronomical observations. We further develop a correction technique to maintain the shape of the cavity as constant as possible during the spectral scan. These are necessary steps to optimize the spectral transmission profile of a two-dimensional spectrograph using one or more FPIs. We devise a generalization of the techniques developed for the so-called phase-shifting interferometry to the case of FPIs. The technique is applicable to any FPI that can be tuned via changing the cavity spacing ($z$-axis), and can be used for any etalon regardless of the coating reflectivity. The major strength of our method is the ability to fully characterize the cavity during a spectral scan, allowing for the determination of scan-dependent modifications of the plates. As a test, we have applied this technique to three 50 mm diameter interferometers, with cavity gaps ranging between 600 micron and 3 mm, coated for use in the visible range. We obtain accurate and reliable measures of the cavity defects of air-spaced FPIs, and of their evolution during the entire spectral scan. Our main, and unexpected, result is that the relative tilt between the two FPI plates varies significantly during the spectral scan, and can dominate the cavity defects; in particular, we observe that the tilt component at the extremes of the scan is sensibly larger than at the center of the scan. Exploiting the capability of the electronic controllers to set the reference plane at any given spectral step, we develop a correction technique that allows the minimization of the tilt during a complete spectral scan. The correction remains highly stable over long periods, well beyond the typical duration of astronomical observations.
We briefly present the history of technical solutions aimed at improving the efficiency of spectroscopy on small- and moderate-diameter telescopes. We assess the current state of spectroscopy techniques and some of the perspectives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا