ﻻ يوجد ملخص باللغة العربية
Preparing for the expected wealth of Gaia detections, we consider here a simple algorithm for classifying unresolved astrometric binaries with main-sequence (MS) primary into three classes: binaries with a probable MS secondary, with two possible values for the mass ratio; probable hierarchical triple MS systems with an astrometric secondary as a close binary, with a limited range of mass-ratio values; and binaries with a compact-object secondary, with a minimal value of the mass ratio. This is done by defining a unit-less observational parameter Astrometric Mass-Ratio Function (AMRF), $mathcal{A}$, of a binary, based on primary-mass estimation, in addition to the astrometric parameters - the angular semi-major axis, the period and the parallax. We derive the $mathcal{A}$ value that differentiates the three classes by forward modeling representative binaries of each class, assuming some mass-luminosity relation.To demonstrate the potential of the algorithm, we consider the orbits of 98 Hipparcos astrometric binaries with main-sequence primaries, using the Hipparcos parallaxes and the primary-mass estimates. For systems with known spectroscopic orbital solution, our results are consistent with the spectroscopic elements, validating the suggested approach. The algorithm will be able to identify hierarchical triple systems and dormant neutron-star and black-hole companions in the Gaia astrometric binaries.
Our long term aim is to derive model-independent stellar masses and distances for long period massive binaries by combining apparent astrometric orbit with double-lined radial velocity amplitudes (SB2). We follow-up ten O+O binaries with AMBER, PIONI
The dependences of inclinations of orbits of secondaries in the discovered trans-Neptunian binaries on the distance between the primary and the secondary, on the eccentricity of orbits of the secondary around the primary, on the ratio of diameters of
HR 6819 was reported in Rivinius et al. (2020) to be a triple system with a non-accreting black hole (BH) in its inner binary. In our study we check if this inner binary can be reconstructed using the isolated binary formation channel or the dynamica
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project currently observes 43 pulsars using the Green Bank and Arecibo radio telescopes. In this work we use a subset of 17 pulsars timed for a span of roughly five years (20
We extend predictive microlensing event searches using the Vista Variables in the Via Lactea survey and the second Gaia data release. We identify two events with maxima in 2019 that require urgent follow-up. First, we predict that the nearby M2 dwarf