ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling limit of a discrete prion dynamics model

216   0   0.0 ( 0 )
 نشر من قبل Thierry Goudon
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Marie Doumic




اسأل ChatGPT حول البحث

This paper investigates the connection between discrete and continuous models describing prion proliferation. The scaling parameters are interpreted on biological grounds and we establish rigorous convergence statements. We also discuss, based on the asymptotic analysis, relevant boundary conditions that can be used to complete the continuous model.



قيم البحث

اقرأ أيضاً

We consider the damped/driven cubic NLS equation on the torus of a large period $L$ with a small nonlinearity of size $lambda$, a properly scaled random forcing and dissipation. We examine its solutions under the subsequent limit when first $lambdato 0$ and then $Lto infty$. The first limit, called the limit of discrete turbulence, is known to exist, and in this work we study the second limit $Ltoinfty$ for solutions to the equations of discrete turbulence. Namely, we decompose the solutions to formal series in amplitude and study the second order truncation of this series. We prove that the energy spectrum of the truncated solutions becomes close to solutions of a damped/driven nonlinear wave kinetic equation. Kinetic nonlinearity of the latter is similar to that which usually appears in works on wave turbulence, but is different from it (in particular, it is non-autonomous). Apart from tools from analysis and stochastic analysis, our work uses two powerful results from the number theory.
348 - Pierre Gabriel 2014
We consider the so-called prion equation with the general incidence term introduced in [Greer et al., 2007], and we investigate the stability of the steady states. The method is based on the reduction technique introduced in [Gabriel, 2012]. The argu ment combines a recent spectral gap result for the growth-fragmentation equation in weighted $L^1$ spaces and the analysis of a nonlinear system of three ordinary differential equations.
We consider the two dimensional version of a drainage network model introduced by Gangopadhyay, Roy and Sarkar, and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the conv ergence criteria proposed by Fontes, Isopi, Newman and Ravishankar.
Consider a linear elliptic partial differential equation in divergence form with a random coefficient field. The solution-operator displays fluctuations around itsexpectation. The recently-developed pathwise theory of fluctuations in stochastic homog enization reduces the characterization of these fluctuations to those of the so-called standard homogenization commutator. In this contribution, we investigate the scaling limit of this key quantity: starting from a Gaussian-like coefficient field with possibly strong correlations, we establish the convergence of the rescaled commutator to a fractional Gaussian field, depending on the decay of correlations of the coefficient field, and we investigate the (non)degeneracy of the limit. This extends to general dimension $dge 1$ previous results so far limited to dimension $d=1$.
We study an interacting particle system in $mathbf{R}^d$ motivated by Stein variational gradient descent [Q. Liu and D. Wang, NIPS 2016], a deterministic algorithm for sampling from a given probability density with unknown normalization. We prove tha t in the large particle limit the empirical measure of the particle system converges to a solution of a non-local and nonlinear PDE. We also prove global existence, uniqueness and regularity of the solution to the limiting PDE. Finally, we prove that the solution to the PDE converges to the unique invariant solution in long time limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا