ترغب بنشر مسار تعليمي؟ اضغط هنا

Global stability for the prion equation with general incidence

120   0   0.0 ( 0 )
 نشر من قبل Pierre Gabriel
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Pierre Gabriel




اسأل ChatGPT حول البحث

We consider the so-called prion equation with the general incidence term introduced in [Greer et al., 2007], and we investigate the stability of the steady states. The method is based on the reduction technique introduced in [Gabriel, 2012]. The argument combines a recent spectral gap result for the growth-fragmentation equation in weighted $L^1$ spaces and the analysis of a nonlinear system of three ordinary differential equations.



قيم البحث

اقرأ أيضاً

We study the motion of an incompressible, inviscid two-dimensional fluid in a rotating frame of reference. There the fluid experiences a Coriolis force, which we assume to be linearly dependent on one of the coordinates. This is a common approximatio n in geophysical fluid dynamics and is referred to as beta-plane. In vorticity formulation the model we consider is then given by the Euler equation with the addition of a linear anisotropic, non-degenerate, dispersive term. This allows us to treat the problem as a quasilinear dispersive equation whose linear solutions exhibit decay in time at a critical rate. Our main result is the global stability and decay to equilibrium of sufficiently small and localized solutions. Key aspects of the proof are the exploitation of a double null form that annihilates interactions between spatially coherent waves and a lemma for Fourier integral operators which allows us to control a strong weighted norm.
In this paper we consider the problem: $partial_{t} u- Delta u=f(u),; u(0)=u_0in exp L^p(R^N),$ where $p>1$ and $f : RtoR$ having an exponential growth at infinity with $f(0)=0.$ We prove local well-posedness in $exp L^p_0(R^N)$ for $f(u)sim mbox{e}^ {|u|^q},;0<qleq p,; |u|to infty.$ However, if for some $lambda>0,$ $displaystyleliminf_{sto infty}left(f(s),{rm{e}}^{-lambda s^p}right)>0,$ then non-existence occurs in $exp L^p(R^N).$ Under smallness condition on the initial data and for exponential nonlinearity $f$ such that $|f(u)|sim |u|^{m}$ as $uto 0,$ ${N(m-1)over 2}geq p$, we show that the solution is global. In particular, $p-1>0$ sufficiently small is allowed. Moreover, we obtain decay estimates in Lebesgue spaces for large time which depend on $m$.
We study the Lipschitz stability in time for $alpha$-dissipative solutions to the Hunter-Saxton equation, where $alpha in [0,1]$ is a constant. We define metrics in both Lagrangian and Eulerian coordinates, and establish Lipschitz stability for those metrics.
71 - Elena Kopylova 2019
We prove global well-posedness for 3D Dirac equation with a concentrated nonlinearity.
180 - Zhiwu Lin , Yue Liu 2007
The Degasperis-Procesi equation can be derived as a member of a one-parameter family of asymptotic shallow water approximations to the Euler equations with the same asymptotic accuracy as that of the Camassa-Holm equation. In this paper, we study the orbital stability problem of the peaked solitons to the Degasperis-Procesi equation on the line. By constructing a Liapunov function, we prove that the shapes of these peakon solitons are stable under small perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا