ترغب بنشر مسار تعليمي؟ اضغط هنا

An extension of Fujitas non extendability theorem for Grassmannians

182   0   0.0 ( 0 )
 نشر من قبل Luis Eduardo Sola Conde
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study smooth complex projective varieties $X$ containing a Grassmannian of lines $G(1,r)$ which appears as the zero locus of a section of a rank two nef vector bundle $E$. Among other things we prove that the bundle $E$ cannot be ample.



قيم البحث

اقرأ أيضاً

We prove Fujitas freeness conjecture for Gorenstein complexity-one $T$-varieties with rational singularities.
143 - Christian Lubbe , Paul Tod 2009
We analyse conformal gauge, or isotropic, singularities in cosmological models in general relativity. Using the calculus of tractors, we find conditions in terms of tractor curvature for a local extension of the conformal structure through a cosmolog ical singularity and prove a local extension theorem.
112 - Yanbo Fang 2019
For a projective variety $X$ defined over a non-Archimedean complete non-trivially valued field $k$, and a semipositive metrized line bundle $(L, phi)$ over it, we establish a metric extension result for sections of $L^{otimes n}$ from a sub-variety $Y$ to $X$. We form normed section algebras from $(L, phi)$ and study their Berkovich spectra. To compare the supremum algebra norm and the quotient algebra norm on the restricted section algebra $V(L_{X|Y})$, two different methods are used: one exploits the holomorphic convexity of the spectrum, following an argument of Grauert; another relies on finiteness properties of affinoid algebra norms.
80 - Vijay V. Vazirani 2020
We prove that a fractional perfect matching in a non-bipartite graph can be written, in polynomial time, as a convex combination of perfect matchings. This extends the Birkhoff-von Neumann Theorem from bipartite to non-bipartite graphs. The algorit hm of Birkhoff and von Neumann is greedy; it starts with the given fractional perfect matching and successively removes from it perfect matchings, with appropriate coefficients. This fails in non-bipartite graphs -- removing perfect matchings arbitrarily can lead to a graph that is non-empty but has no perfect matchings. Using odd cuts appropriately saves the day.
83 - Yi Hu 2021
Let $X$ be an integral scheme of finite presentation over a field. Let $q$ be a singular closed point of $X$. We prove that there exists an open subset $V$ of $X$ containing $q$ such that $V$ admits a resolution, that is, there exists a smooth scheme $widetilde V$ and a proper birational morphism from $widetilde V$ onto $V$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا