ﻻ يوجد ملخص باللغة العربية
We prove that a fractional perfect matching in a non-bipartite graph can be written, in polynomial time, as a convex combination of perfect matchings. This extends the Birkhoff-von Neumann Theorem from bipartite to non-bipartite graphs. The algorithm of Birkhoff and von Neumann is greedy; it starts with the given fractional perfect matching and successively removes from it perfect matchings, with appropriate coefficients. This fails in non-bipartite graphs -- removing perfect matchings arbitrarily can lead to a graph that is non-empty but has no perfect matchings. Using odd cuts appropriately saves the day.
We revisit the Krein-von Neumann extension in the case where the underlying symmetric operator is strictly positive and apply this to derive the explicit form of the Krein-von Neumann extension for singular, general (i.e., three-coefficient) Sturm-Li
The properties of quantum probabilities are linked to the geometry of quantum mechanics, described by the Birkhoff-von Neumann lattice. Quantum probabilities violate the additivity property of Kolmogorov probabilities, and they are interpreted as Dem
We prove the unitary equivalence of the inverse of the Krein--von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, $Sgeq epsilon I_{mathcal{H}}$ for some $epsilon >0$ in a Hilber
Is is shown here that the simple test of quantumness for a single system of arXiv:0704.1962 (for a recent experimental realization see arXiv:0804.1646) has exactly the same relation to the discussion of to the problem of describing the quantum system
Quantum measurements can be interpreted as a generalisation of probability vectors, in which non-negative real numbers are replaced by positive semi-definite operators. We extrapolate this analogy to define a generalisation of doubly stochastic matri