ترغب بنشر مسار تعليمي؟ اضغط هنا

Grassmannians and Singularities

84   0   0.0 ( 0 )
 نشر من قبل Yi Hu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Yi Hu




اسأل ChatGPT حول البحث

Let $X$ be an integral scheme of finite presentation over a field. Let $q$ be a singular closed point of $X$. We prove that there exists an open subset $V$ of $X$ containing $q$ such that $V$ admits a resolution, that is, there exists a smooth scheme $widetilde V$ and a proper birational morphism from $widetilde V$ onto $V$.



قيم البحث

اقرأ أيضاً

We provide a characterization of Symplectic Grassmannians in terms of their Varieties of Minimal Rational Tangents.
73 - Matthias Wendt 2018
We complement our previous computation of the Chow-Witt rings of classifying spaces of special linear groups by an analogous computation for the general linear groups. This case involves discussion of non-trivial dualities. The computation proceeds a long the lines of the classical computation of the integral cohomology of ${rm BO}(n)$ with local coefficients, as done by Cadek. The computations of Chow-Witt rings of classifying spaces of ${rm GL}_n$ are then used to compute the Chow-Witt rings of the finite Grassmannians. As before, the formulas are close parallels of the formulas describing integral cohomology rings of real Grassmannians.
Let the vector bundle $mathcal{E}$ be a deformation of the tangent bundle over the Grassmannian $G(k,n)$. We compute the ring structure of sheaf cohomology valued in exterior powers of $mathcal{E}$, also known as the polymology. This is the first par t of a project studying the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle, a generalization of ordinary quantum cohomology rings of Grassmannians. A companion physics paper [arXiv:1512.08586] describes physical aspects of the theory, including a conjecture for the quantum sheaf cohomology ring, and numerous examples.
We classify complex projective varieties of dimension $2r geq 8$ swept out by a family of codimension two grassmannians of lines $mathbb{G}(1,r)$. They are either fibrations onto normal surfaces such that the general fibers are isomorphic to $G(1,r)$ or the grassmannian $mathbb{G}(1,r+1)$. The cases $r=2$ and $r=3$ are also considered in the more general context of varieties swept out by codimension two linear spaces or quadrics.
74 - Tom Bachmann 2018
Let k be a field. Denote by Spc(k)_* the unstable, pointed motivic homotopy category and by Omega_Gm: Spc(k)_* to Spc(k)_* the Gm-loops functor. For a k-group G, denote by Gr_G the affine Grassmannian of G. If G is isotropic reductive, we provide a c anonical motivic equivalence Omega_Gm G = Gr_G. If k is perfect, we use this to compute the motive M(Omega_Gm G) in DM(k, Z).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا