ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio core-level shifts in metallic alloys

139   0   0.0 ( 0 )
 نشر من قبل Vincenzo Fiorentini
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Core-level shifts and core-hole screening effects in alloy formation are studied ``ab initio by constrained-density-functional total-energy calculations. For our case study, the ordered intermetallic alloy MgAu, final-state effects are essential to account for the experimental Mg 1s shift, while they are negligible for Au 4f. We explain the differences in the screening by analyzing the calculated charge density response to the core hole perturbation.



قيم البحث

اقرأ أيضاً

The calculation of self-energy corrections to the electron bands of a metal requires the evaluation of the intraband contribution to the polarizability in the small-q limit. When neglected, as in standard GW codes for semiconductors and insulators, a spurious gap opens at the Fermi energy. Systematic methods to include intraband contributions to the polarizability exist, but require a computationally intensive Fermi-surface integration. We propose a numerically cheap and stable method, based on a fit of the power expansion of the polarizability in the small-q region. We test it on the homogeneous electron gas and on real metals such as sodium and aluminum.
A density-functional-theory based approach to efficiently compute numerically exact vibrational free energies - including anharmonicity - for chemically complex multicomponent alloys is developed. It is based on a combination of thermodynamic integra tion and a machine-learning potential. We demonstrate the performance of the approach by computing the anharmonic free energy of the prototypical five-component VNbMoTaW refractory high entropy alloy.
We present an ab initio theory of transport quantities of metallic ferromagnets developed in the framework of the fully relativistic tight-binding linear muffin-tin orbital method. The approach is based on the Kubo-Streda formula for the conductivity tensor, on the coherent potential approximation for random alloys, and on the concept of interatomic electron transport. The developed formalism is applied to pure 3d transition metals (Fe, Co, Ni) and to random Ni-based ferromagnetic alloys (Ni-Fe, Ni-Co, Ni-Mn). High values of the anisotropic magnetoresistance (AMR), found for Ni-rich alloys, are explained by a negligible disorder in the majority spin channel while a change of the sign of the anomalous Hall effect (AHE) on alloying is interpreted as a band-filling effect without a direct relation to the high AMR. The influence of disorder on the AHE in concentrated alloys is investigated as well.
Age hardening induced by the formation of (semi)-coherent precipitate phases is crucial for the processing and final properties of the widely used Al-6000 alloys. Early stages of precipitation are particularly important from the fundamental and techn ological side, but are still far from being fully understood. Here, an analysis of the energetics of nanometric precipitates of the meta-stable $beta$ phases is performed, identifying the bulk, elastic strain and interface energies that contribute to the stability of a nucleating cluster. Results show that needle-shape precipitates are unstable to growth even at the smallest size $beta$ formula unit, i.e. there is no energy barrier to growth. The small differences between different compositions points toward the need for the study of possible precipitate/matrix interface reconstruction. A classical semi-quantitative nucleation theory approach including elastic strain energy captures the trends in precipitate energy versus size and composition. This validates the use of mesoscale models to assess stability and interactions of precipitates. Studies of smaller 3d clusters also show stability relative to the solid solution state, indicating that the early stages of precipitation may be diffusion-limited. Overall, these results demonstrate the important interplay among composition-dependent bulk, interface, and elastic strain energies in determining nanoscale precipitate stability and growth.
The potential of a wide range of layered ternary carbide and nitride MAX phases as conductors in interconnect metal lines in advanced CMOS technology nodes has been evaluated using automated first principles simulations based on density functional th eory. The resistivity scaling potential of these compounds, i.e. the sensitivity of their resistivity to reduced line dimensions, has been benchmarked against Cu and Ru by evaluating their transport properties within a semiclassical transport formalism. In addition, their cohesive energy has been assessed as a proxy for the resistance against electromigration and the need for diffusion barriers. The results indicate that numerous MAX phases show promise as conductors in interconnects of advanced CMOS technology nodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا