ﻻ يوجد ملخص باللغة العربية
We model the response of a state of the art micro-hole single-stage charge amplication device (`microbulk Micromegas) in a gaseous atmosphere consisting of Xenon/trimethylamine at various concentrations and pressures. The amplifying structure, made with photo-lithographic techniques similar to those followed in the fabrication of gas electron multipliers (GEMs), consisted of a 100 um-side equilateral-triangle pattern with 50 um-diameter holes placed at its vertexes. Once the primary electrons are guided into the holes by virtue of an optimized field configuration, avalanches develop along the 50 um-height channels etched out of the original doubly copper-clad polyimide foil. In order to properly account for the strong field gradients at the holes entrance as well as for the fluctuations of the avalanche process (that ultimately determine the achievable energy resolution), we abandoned the hydrodynamic framework, resorting to a purely microscopic description of the electron trajectories as obtained from elementary cross-sections. We show that achieving a satisfactory description needs additional assumptions about atom-molecule (Penning) transfer reactions and charge recombination to be made.
A new Micromegas manufacturing technique, based on kapton etching technology, has been recently developed, improving the uniformity and stability of this kind of readouts. Excellent energy resolutions have been obtained, reaching 11% FWHM for the 5.9
This work investigates the capability of TMA ((CH3)3N) molecules to shift the wavelength of Xe VUV emission (160-188 nm) to a longer, more manageable, wavelength (260-350 nm). Light emitted from a Xe lamp was passed through a gas chamber filled with
The latest Micromesh Gas Amplification Structures (Micromegas) are achieving outstanding energy resolution for low energy photons, with values as low as 11% FWHM for the 5.9 keV line of $^{55}$Fe in argon/isobutane mixtures at atmospheric pressure. A
A technical description of NEXT-MM and its commissioning and first performance is reported. Having an active volume of ~35 cm drift $times$ 28 cm diameter, it constitutes the largest Micromegas-read TPC operated in Xenon ever constructed, made by a s
We report the design, construction, and initial commissioning results of a large high pressure gaseous Time Projection Chamber (TPC) with Micromegas modules for charge readout. The detector vessel has an inner volume of about 600 L and an active volu