ﻻ يوجد ملخص باللغة العربية
To search for new evidence of the chiral p-wave superconducting domain in Sr2RuO4, we investigated the unconventional local transport characteristics of a microfabricated Sr2RuO4-Ru eutectic junction. We found that the anomalous hysteresis in voltage-current characteristics [as reported in H. Kambara et al.: Phys. Rev. Lett. 101 (2008) 267003.] is strongly affected by dc currents, but not by magnetic fields. This suggests that dc current acts as a driving force to move chiral p-wave domain walls; a domain wall trapped at a pinning potential is forced to shift to the next stable position, thereby forming a larger critical current path and resulting in the anomalous hysteresis.
Josephson junctions with an intrinsic phase shift of pi, so-called pi Josephson junctions, can be realized by a weak link of a d-wave superconductor with an appropriate boundary geometry. A model for the pairing potential of an according weak link is
We present an experimental and theoretical study of the magnetic field dependence of the critical current of Josephson junction ladders. At variance with the well-known case of a one-dimensional (1D) parallel array of Josephson junctions the magnetic
We investigated the low-energy incommensurate (IC) magnetic fluctuations in Sr$_2$RuO$_4$ by the high-resolution inelastic neutron scattering measurements and random phase approximation (RPA) calculations. We observed a spin resonance with energy of
An experimental investigation of the critical current noise in underdamped niobium based Josephson junctions by a technique based on the switching current measurements is reported. By sweeping the junction with a current ramp we measure the critical
The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Contrary to earlier understanding on nano-patterned artificial pinning, here we show unequivocally the advantages of a random pinscape over an