ﻻ يوجد ملخص باللغة العربية
A subset $X$ in the $d$-dimensional Euclidean space is called a $k$-distance set if there are exactly $k$ distinct distances between two distinct points in $X$ and a subset $X$ is called a locally $k$-distance set if for any point $x$ in $X$, there are at most $k$ distinct distances between $x$ and other points in $X$. Delsarte, Goethals, and Seidel gave the Fisher type upper bound for the cardinalities of $k$-distance sets on a sphere in 1977. In the same way, we are able to give the same bound for locally $k$-distance sets on a sphere. In the first part of this paper, we prove that if $X$ is a locally $k$-distance set attaining the Fisher type upper bound, then determining a weight function $w$, $(X,w)$ is a tight weighted spherical $2k$-design. This result implies that locally $k$-distance sets attaining the Fisher type upper bound are $k$-distance sets. In the second part, we give a new absolute bound for the cardinalities of $k$-distance sets on a sphere. This upper bound is useful for $k$-distance sets for which the linear programming bound is not applicable. In the third part, we discuss about locally two-distance sets in Euclidean spaces. We give an upper bound for the cardinalities of locally two-distance sets in Euclidean spaces. Moreover, we prove that the existence of a spherical two-distance set in $(d-1)$-space which attains the Fisher type upper bound is equivalent to the existence of a locally two-distance set but not a two-distance set in $d$-space with more than $d(d+1)/2$ points. We also classify optimal (largest possible) locally two-distance sets for dimensions less than eight. In addition, we determine the maximum cardinalities of locally two-distance sets on a sphere for dimensions less than forty.
A finite subset $X$ of the Euclidean space is called an $m$-distance set if the number of distances between two distinct points in $X$ is equal to $m$. An $m$-distance set $X$ is said to be maximal if any vector cannot be added to $X$ while maintaini
Let $mathbb{F}_q$ be a finite field of order $q$, and $P$ be the paraboloid in $mathbb{F}_q^3$ defined by the equation $z=x^2+y^2$. A tuple $(a, b, c, d)in P^4$ is called a non-trivial energy tuple if $a+b=c+d$ and $a, b, c, d$ are distinct. For $Xsu
A set $X$ in the Euclidean space $mathbb{R}^d$ is called an $m$-distance set if the set of Euclidean distances between two distinct points in $X$ has size $m$. An $m$-distance set $X$ in $mathbb{R}^d$ is said to be maximal if there does not exist a v
We prove in this note that, for an alphabet with three letters, the set of first return to a given word in a set satisfying the tree condition is a basis of the free group.
In analogy to the definition of the lambda-determinant, we define a one-parameter deformation of the Dodgson condensation formula for Pfaffians. We prove that the resulting rational function is a polynomial with weights given by the crossings and nes